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ABSTRACT 
Bitcoin is probably the most well-known blockchain system in existence. It employs the proof-
of-work (PoW) consensus algorithm to add transactions to the blockchain. This process is 
better known as Bitcoin mining. PoW requires miners to compete in solving a cryptographic 
puzzle before being allowed to add a block of transactions to the blockchain. This mining 
process is energy-intensive and results in high energy wastage. The underlying cause of this 
energy inefficiency is the result of the current implementation of the PoW algorithm. PoW 
assigns the same cryptographic puzzle to all miners, creating a linear probability of success 
between the miner’s computational power as a proportion of the total computational power of 
the network. To address this energy inefficiency of the PoW mining process, the researchers 
investigated whether a nonlinear probability of success, between the miner’s computation 
power and its probability of success, will result in better energy usage. A nonlinear proof-of-
work (nlPoW) algorithm was constructed by using a design science approach to derive the 
requirements for and structure of the algorithm. The Bitcoin mining process was tested 
through statistical simulation, comparing the performance of nlPoW with PoW. Preliminary 
results, simulating a network of 1000 miners with identical computational power, indicate that 
nlPoW reduce the number of hash computations, and therefore the energy consumption, 
required by Bitcoin mining. The findings are significant because nlPoW does not reduce the 
degree of decentralised consensus, or trade energy usage for some other resource as is the case 
with many other attempts to address the energy consumption problem in PoW.  
 
Keywords: Bitcoin, bitcoin mining, consensus algorithm, nonlinear proof-of-work, proof-of-
work 
 

 
 
 

 

1. INTRODUCTION 
Blockchain systems such as Bitcoin is a public, indelible, transactional data structure shared 
on a distributed computer network without a central authority (Mulár, 2018). The nodes of 
the distributed, decentralised computer network follow a pre-determined set of rules 
(consensus algorithm) to add transactions and reach consensus on the single correct version 
of the transaction history in the blockchain. This entire process is called Bitcoin mining 
(Nakamoto, 2008). 

In order for blockchain systems to work as distributed systems, they require consensus 
algorithms to function under the assumption that a limited number of the components may 
be faulty. It is critical that distributed systems are able to agree on a piece of data (the 
transaction record in this case) even if part of the system is unreliable (Fischer, 1983). Section 
3.4 deals with different consensus algorithms, and Section 5 places these into context with 
the algorithm that is proposed in this research.  
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Different blockchain systems all share certain essential components, although they 
differ in their intended application and in the architecture used to achieve their aims and 
objectives. Section 2 describes the basic blockchain components as introduced by Nakamoto 
for what was to become Bitcoin (Nakamoto, 2008) and elaborated upon by Zheng et al. (2017).  

The Bitcoin mining process is extremely energy-intensive and results in high energy 
wastage. The underlying cause of this energy inefficiency is the result of the original 
implementation of the proof-of-work (PoW) algorithm, as discussed in Section 3. For this 
reason, the researchers studied the effect of a nonlinear proof-of-work (nlPoW) algorithm on 
the energy usage of the Bitcoin network.  
 
 

2. BITCOIN BLOCKCHAIN DATA STRUCTURE 
The blockchain data structure consists of a sequential series of data blocks that are 
cryptographically linked. Each block consists of three main components or sub-blocks, 
namely the transaction block, block header and block hash (BitcoinProject, 2020). These 
components will be discussed in Sections 2.1, 2.2 and 2.3, respectively. 
 
2.1 Transaction Block 
The transaction sub-block contains a set of transactions to be added to the blockchain. In 

Bitcoin, this set of transactions is structured as a Merkle tree ( 

Figure 1) where each parent hash contains a hash of its children. This process culminates in 
a root hash that contains a signature unique to the data contained in all the transactions and 
which would fail to be reproducible if any of the information in any of transactions were to 
be changed (BitcoinProject, 2020; Nakamoto, 2008). 
 

 
 

Figure 1: Transaction Merkle tree (Nakamoto, 2008) 
 
In Bitcoin, the first transaction in the transaction Merkle tree is called the coinbase 
transaction. This transaction furthermore has the specific function of creating new Bitcoins 
and paying them to the mining node as a mining reward (Antonopoulos, 2014; 
BitcoinProject, 2020; Narayanan et al., 2016). 
 

2.2 Block Header 
In its simplest form, a blockchain is a tamper-evident log of transactions. This means that 
each block must contain the transactions, a hash pointer to the previous block and a 
timestamp (Mulár, 2018). Nakamoto (2008) showed that it is not necessary to calculate the 
hash of the entire block, including all the transactions. The block header can, instead, be 
constructed to contain only the root hash of the transaction Merkle tree including the 
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previous block hash and timestamp. Depending on the specific blockchain, some other block 
data may also be included in the block header. Note that the block hash is computed only 
from the block header. The Bitcoin block header contains the fields, as indicated in Table 1. 
 
Table 1: Bitcoin block header fields (BitcoinProject, 2020) 
Field Contents 

Previous block hash Block hash calculated during previous block round. 
Transaction Merkle tree root 
hash 

The root hash of the transaction Merkle tree. 

Timestamp Timestamp when the miner started mining the block – according 
to the miner’s clock. 

Consensus algorithm software 
version 

Specifies the set of validation rules used to create the block. 

Number used only once (nonce) A number, typically starting at zero and increased by one for 
every hash calculation. This produces a new hash while keeping 
all the other header fields unchanged. 

nBits field / Static target 
(difficulty parameter) that all 
miners must solve 

A binary number that indicates the maximum value that the hash 
may be. The miner must keep on changing the nonce and re-
hashing the block header until the hash is strictly smaller than the 
target (difficulty parameter). 

 

2.3 Block Hash 
The block hash is the hash of the block header data and must conform to the rules of the 
consensus algorithm (Section 0). These rules include a calculation difficulty (in the form of 
a target) that the mining node must prove it reached during the construction of the block. 
Although it is challenging for the mining node to compute a suitable hash value, it is 
straightforward for any other node to inspect the blockchain and confirm that the mining 
node did indeed do the required work (Zheng et al., 2017). 

Figure 2 depicts the components of a Bitcoin block and shows how the cryptographic 
link between blocks are formed by including the hash of the previous block header in the 
hash of each new block. 

 

 
Figure 2: Structure of the Bitcoin blockchain (Zheng et al., 2017) 

 
 

3. BITCOIN CONSENSUS ALGORITHM 
A blockchain consensus algorithm is a detailed set of rules that miners follow in order to 
mine new blocks and to agree amongst themselves which version of the blockchain is 
considered the valid one (Zheng et al., 2017). The focus of this paper is on the Bitcoin PoW 
consensus algorithm, which is discussed in Section 3.1. In Section 3.2, the valid chain 
selection process is explained, followed by the side-effects of PoW in Section 3.3. The 
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enormous energy wastage of the Bitcoin network, which is also the problem that is 
investigated in this paper, is discussed in Section 3.3.1. 
 
3.1 Proof-of-Work 
PoW is an algorithm for determining which miners managed to create valid new blocks. This 
entails the calculation of a hash value of sufficient difficulty from the block header data, 
including the transaction Merkle tree root hash, which serves as a “cryptographic summary” 
of all the transactions in the block. The target is selected so that it requires each miner to 
calculate an enormous number of hashes, each time using a new nonce to render a different 
hash, before finding a suitable block hash (Antonopoulos, 2014; Nakamoto, 2008; Narayanan 
et al., 2016). 

One of the built-in rules of Bitcoin’s PoW is that the network recalculates the target 
every 2016 blocks so that it takes on average 600 seconds (10 minutes) to mine a block. The 
calculation adjusts the target by the factor that the average block addition time is less than 
or more than 10 minutes and has the effect that the difficulty changes as the computational 
power of the network changes. Both the 10-minute average block addition time and the 2016 
block target recalculation interval (at 10-minute intervals the mining of 2016 blocks equates 
to two weeks) are arbitrary values that were introduced by Nakamoto in the original Bitcoin 
software (Nakamoto, 2008). Any other values could substitute these values. Historically, the 
Bitcoin block addition times mostly started at 10 minutes and decreased over the span of 
2016 blocks (which then also took less time to complete than the theoretical two weeks), as 
new computational power was continuously added to the network. This decrease in block 
addition times continued until such time that the target was recalculated (Antonopoulos, 
2014; Narayanan et al., 2016). 

One of the core innovations of Bitcoin is that any miner is allowed to add a block to the 
blockchain with the simple rule that the first valid block announced, is the correct one. In 
practice it does happen, due to the latency of data propagation, that more than one valid block 
is found by the network, bringing multiple branches of the blockchain into existence. This is 
called a fork in the blockchain and has the result that different partitions of the network may 
mine onto different branches (Eyal et al., 2016). 

As one of the forks eventually becomes longer than the other, it will eventually replace 
all other versions of the blockchain on the network (Bonneau et al., 2015). It can be inferred 
that transactions that were contained in the shorter fork will then be included in future blocks 
on the longer chain. 
 
3.2 Valid Chain Selection and Transaction Security 
A critical requirement of any blockchain system is that the network of miners eventually 
reaches an agreement on only one valid version of the blockchain, discarding all other forks. 
In Bitcoin, this is done through the longest chain rule. The fork that is mined by the largest 
network partition (by computing power) will eventually grow longer (will contain more 
blocks) than forks that are mined by smaller partitions (by computing power) (Nakamoto, 
2008). Nakamoto (2008) referred to this principle in the context of the proportion of honest 
to dishonest miners, but it applies to network partitions in general. 

When a miner receives a version of the blockchain that is longer than the one it is 
currently mining, it will discard its current blockchain and replace it with the longer one. 
This process ensures that only the longest blockchain survives and becomes the only valid 
blockchain accepted by all miners (Zheng et al., 2017). As a block becomes buried under more 
blocks in the blockchain, it becomes increasingly unlikely that an adversary will be able to 
apply enough resources to change a transaction in that block, improving the confidence of a 
payee that a received payment is secure (Bentov et al., 2016).  
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3.3 The Side-effects of Proof-of-Work 
Ma et al. (2018) note that finding a suitable hash requires no strategy by a miner, but relies 
on a form of brute force guessing (making a large number of guesses, each time with another 
nonce in the header, until a suitable hash is discovered) to solve a computational puzzle. The 
more computational power commanded by a miner, the more likely it is to solve the puzzle 
first and claim the prize, although the process remains probabilistic and does not guarantee 
that the most powerful miner will prevail. 

Dimitri (2017) presents a framework whereby each round of the Bitcoin mining process 
can be viewed as an all-pay contest. An all-pay contest is a competition where the award or 
prize is known in advance and require everyone to make an investment to participate. Having 
miners play this type of game has two important desirable effects on the blockchain 
ecosystem, whereby firstly, it results in very few (preferably one) suggested new blocks to be 
found during each round and secondly, reducing the ability for bad actors to take back already 
spent Bitcoins. This is important as there is no prohibition on anyone to participate as a 
Bitcoin miner (Ma et al., 2018). On the other hand, brute force guessing and unprohibited 
participation have led to one of the main undesirable side effects of Bitcoin mining, namely 
energy wastage. 

3.3.1 Energy Wastage by Bitcoin Mining 
The incentive structure of Bitcoin’s PoW consensus scheme requires that all the miners in 
the network calculate an enormous amount of hashes in the race to be the first to produce 
one suitable block hash (Ma et al. 2018). This translates into an unsustainable level of energy 
usage. As the computing power of the network increases, resulting in a higher hash rate by 
the network in general, the target of the block hash is automatically adjusted downward 
(difficulty is increased) by the consensus algorithm. This is done to keep the average block 
creation time constant, but in turn, results in mining entities adding ever more computing 
power to remain competitive (Tschorsch & Scheuermann, 2016). Ma et al. (2018) point out 
that as the value of Bitcoin has risen over the years (2009 to 2018 were the years covered by 
their research), the reward from mining has become more substantial, resulting in drawing 
more participants and consequently, increasing energy usage.  

According to the Digiconomist (2020), the Bitcoin network consumed an estimated 66 
terawatt-hour (TWh) of electricity per year in August 2020. This is comparable with the 
energy consumption of The Czech Republic, a country with 10.7 million inhabitants (July 
2020 estimate) (Central Intelligence Agency, 2020). 

Only a single block, mined by a single miner eventually survives to permanently become 
part of the blockchain and all the energy expended by unsuccessful miners, which is the vast 
majority, goes to waste (Zheng et al., 2017). Tschorsch and Scheuermann (2016) state that, 
given the same block hash target for each miner and given that all miners aim to come up 
with a solution, the chance of solving the block hash is proportional to the miner’s fraction 
of the total computing power. In other words, the probability of successfully mining a block 
is linear to the computational power, as explained by (Dimitri, 2017): 

Assume a network where each miner is denoted as 𝑖 and: 𝑖 =  1, 2, . . , 𝑛 

The hash power of each miner is denoted as: ℎ𝑖 

Thus, the hash power of the entire network is denoted as: ℎ𝑛 
Then, the probability that a miner is the first to solve the block hash is: 

P(ℎ𝑖) =  
ℎ𝑖

ℎ𝑛
           (1) 

 
Since the total computing power of the network can be considered to be a constant, C, during 
the 600-second interval of each block round (Section 3.1), equation 1 becomes a linear 
equation: 

P(ℎ𝑖) =  
ℎ𝑖

𝐶
            (2) 
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and the probability for any miner i, becomes linear to its proportion of computing power 
(hi) in the network. 
 

3.4 Related work 
Many alternative types of consensus schemes have been proposed for blockchain systems, 
which can broadly be categorised into proof-based and voting-based algorithms (Nguyen & 
Kim, 2018). Not all of these focus on addressing the shortcoming of PoW. Voting-based 
algorithms forego decentralised consensus in favour of improved trust assumptions about 
the network, afforded by a controlled pool of participants. These types of algorithms fall 
outside the scope of this research as the primary motivation for PoW is to maintain a 
completely decentralised consensus.  

Some proof-based algorithms have made attempts to lower resource usage during 
mining, most notably, proof-of-stake, proof-of-importance (Bentov et al., 2016; NEM, 2018; 
Zheng et al., 2017) and delegated proof-of-stake (BitShares Blockchain Foundation, n.d.; 
Hasib, 2018). There have also been attempts to exchange energy for other resources during 
the mining process, these types of solutions include PoW with a cuckoo hash function (relies 
on memory rather than computational power) (Tromp, 2014), proof-of-human-work 
(requires inputs that are easy for humans to provide, but difficult for computers) (Blocki & 
Zhou, 2016), proof-of-burn (uses blockchain tokens) (Jenks, 2018; P4Titan, 2014), proof-of-
space (relies on data storage capacity) (Dziembowski et al., 2015), proof-of-entanglement 
(depends on the quantum properties of light) (Bennet & Daryanoosh, 2019), proof-of-elapsed 
time and proof-of-luck (uses centralised random number generation) (Nguyen & Kim, 2018) 
and proof-of-responsibility (relies on trusted nodes) (Coinspace.com, 2019). 

Consensus algorithm development is an ongoing process, as new ideas are constantly 
being added and tested (Zheng et al., 2017). In the discussion section, the solution proposed 
in this paper will be placed in context with these existing alternatives. 
 

4. PROPOSED SOLUTION 
In Section 0.3.1, the high energy wastage of PoW was identified as a major concern for the 
long-term sustainability of the Bitcoin network. The energy consumption is related to the 
amount of computation required and is measured in hashes per second per watt (H/s/W) 
(Narayanan et al., 2016). This energy wastage was linked to the fact that each miner’s 
probability of success is linear to the proportion of its computational power. If this probability 
of success could be changed to be nonlinear to the computational power of each miner, it is 
reasonable to argue whether it would have an effect on the energy consumption of the 
network as a whole. In other words, if every miner received a random target during each 
block round, will it reduce the energy consumption of the mining network? 

The researchers propose a nonlinear proof-of-work (nlPoW) algorithm for assigning a 
dynamic target (random target) to each miner during each block round (Section 4.1). 
Furthermore, the researchers want to provide initial indications of the viability of the 
solution through the simulation of the mining process under nlPoW (Section 4.2). The 
rationale for this approach is two-fold, firstly it is expected that miners that receive a large 
target (small difficulty) in comparison to other miners may be able to solve the block 
relatively quickly with fewer computations, thereby saving the amount of energy expended 
by the network (as soon as a new block is announced, the rest of the network stops mining 
their current blocks and starts the process of mining new blocks that follow on the newly 
announced one). Secondly, there may arise circumstances where miners who receive a 
relatively small target (large difficulty) are discouraged from taking part in a block round 
altogether. 
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The implication of the first rationale, should it hold, is based on the fact that the average 
block addition time as set by the original algorithm (Section 3.1), may decrease. As stated 
before, the 10-minute average block addition time in the original Bitcoin algorithm is an 
arbitrary value, but it does form the basis of the periodic target adjustment to account for 
changes in the computing power of the Bitcoin network. The nlPoW algorithm must retain 
the ability to account for changes in network computing power (Section 4.3.1). 

It is very difficult to envisage the implications of the second rationale as it is impossible 
to predict the circumstances and motivations that drive the decision-making process of 
individual miners. For the purposes of this study, a simple assumption will be made that a 
miner will participate as long as its dynamic target is greater than, or equal to the static 
target (difficulty parameter) during any given target adjustment interval (Section 4.1). If the 
dynamic target is less than the static target, the miner will not participate. 

 
4.1 Assigning a Random Target 
Assigning a dynamic target to each miner entails generating a uniformly distributed random 

number in the range 0 𝑡𝑜 2256 (the possible outcomes of the SHA256 hash algorithm). Stark 
and Ottoboni (2018) propose that cryptographic hash functions may be useful as pseudo-
random number generators. The unpredictability and collision-resistant properties of hash 
functions make them suitable for pseudo-random number generators.  

For the purposes of this research, the cryptographic hash function provides an elegant 
solution to generating a pseudo-random number, but it will require a seed (input value) with 
specific characteristics. It is important that the seed is determined during the design of the 
algorithm and that it conforms to a number of guidelines that the algorithm must adhere to 
when selecting the seed.  

Firstly, the seed must be unique to each miner so that the target calculated for each 
miner is different. Secondly, the information for selecting the seed must be encoded on the 
blockchain to allow other miners to confirm the target calculated by the successful miner and 
by implication, the validity of the block hash produced. Thirdly, the seed must change every 
time a new block is constructed so as not to provide a permanent advantage or disadvantage 
to any individual miner. Finally, since each miner is free to choose any strategy to its 
advantage, it must not be possible for the miner to manipulate the seed (generate many seeds) 
until it produces an easy target for itself. 

One solution to this problem is to construct the seed from the miner’s coinbase address 
and the previous block hash with the proviso that the coinbase address must contain a 
previous transaction on the blockchain (the coinbase address may not be created at the same 
time as the block containing it). 
  
4.2 Simulation of Dynamic Target Assignment 
In order to investigate the proposed solution that assigning a dynamic target from a uniform 
distribution to each miner, during each block round, will reduce the number of computations 
performed by the network to mine a new block, the mining process was simulated. During 
the simulation, a random target was awarded to each miner by calculating the SHA256 hash 
of the miner’s address in conjunction with a fictional previous block hash. The address for 
each miner was unique, and the previous block hash was identical for all miners.  

By dividing the result of the SHA256 hash function above by 10000 and taking the 
remainder, a uniformly distributed random number ranging from zero to 9999 is produced. 
This number can be standardised to produce a uniformly distributed random number (to four 
decimals) in the range (0,1] (zero excluded and 1 included) by adding one and dividing by 
10000. 

This paper details the simulation results from two methods of using a uniformly 
distributed, standardised number to generate a random target for each miner, namely 
unidirectional random target assignment (Section 4.3) and the bidirectional random target 
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assignment (Section 4.4). For the purpose of simulation, the state of the Bitcoin network was 
selected from block 592583 on 31 August 2019 (BTC.com, 2019).  
 
4.3 nlPoW: Unidirectional random target assignment 
Unidirectional random target assignment is a “one-way” adjustment of the static target, 
using the random number calculated (Section 4.2) for each miner, in order to arrive at the 
dynamic target. The static target is divided by the standardised uniform random variable to 
produce a dynamic target that is different (larger than the static target) for each miner, 
unpredictable and changes with each block round. The change in the random number is 
precipitated by the fact that the previous block hash changes (unpredictably) with each new 
block. This dynamic target is unrelated to the computational power of the miner and cannot 
be predicted in advance. The unpredictability in conjunction with the variability of the target 
means that there is no linear probability between the miner’s computational power and its 
probability of solving the block. Table 2 shows a sample of the results from a simulation of 
unidirectional dynamic targets for 1000 miners from a uniform distribution, representing 
one block round.  

Before the simulated random numbers could be applied to produce a dynamic target for 
each miner, it was necessary to determine if the values in (The “Standardised random 
variable” column, in Table 2) were indeed random. For this purpose, the Kolmogorov-
Smirnov test (Accord, 2017) was used, and the following null hypothesis was formulated:  

 
H0: The series of standardised random variables (column 2 in Table 2) is random. 

 

At the confidence level of α = 0.05, the null hypothesis was not rejected, and the series of 
standardised random variables were assumed to be random. 
 
Table 2: Sample of simulated results for unidirectional dynamic targets 

Miner 
number 

Standardised 
random 
variable 

Nonlinear 
target 

Estimated 
number of hashes 

required by a 
miner 

Static 
target 

Estimated 
number of 

hashes required 
by the static 

target 
 A random 

value in the 
range (0,1] 

The dynamic 
target for this 
miner in this 
block round. 
Static target 
divided by a 
standardised 

random 
variable 

Estimated number 
of hashes required 
by a miner to find 

a hash smaller 
than the nonlinear 

target 

Original 
target 

encoded in 
the block 
header - 

nBits 
parameter 
in Table 1 

Estimated 
number of hashes 

required by a 
miner to find a 
hash smaller 

than the static 
target 

0 0.5514 4.8015E+054 2.41E+022 2.65E+054 4.37E+022 

1 0.3021 8.7643E+054 1.32E+022 2.65E+054 4.37E+022 

… … … … … … 

998 0.9309 2.8438E+054 4.07E+022 2.65E+054 4.37E+022 

999 0.5652 4.6839E+054 2.47E+022 2.65E+054 4.37E+022 

Total network hashes nlPow: 2.25E+025 PoW: 4.37E+025 

 



Bezuidenhout et al.  JCPMI, 10(1): 20-32  

28 

 

The next step determined the total number of hashes that would be calculated under existing 
PoW. The total estimated number of hashes that was calculated by the entire network under 
the existing PoW algorithm with a static target was  
 

4.3738 ∗  1025 ℎ𝑎𝑠ℎ𝑒𝑠 
 
In contrast, the total estimated number of hashes that was calculated by the entire network 
under the nlPoW algorithm was 
 

2.2486 ∗  1025 ℎ𝑎𝑠ℎ𝑒𝑠 
 
This nlPoW algorithm produces a saving of 
 

2.215 ∗  1025 ℎ𝑎𝑠ℎ𝑒𝑠 𝑂𝑅 48.59% 
 
The above results depict a single block round. In order to see what the results will look like 
over time, the simulation was extended to produce results for 2016 block rounds to represent 
one target readjustment interval (Table 3). 
 
Table 3: Simulated results for unidirectional dynamic target over one block adjustment 
interval 

Rounds 2 016 
Miners 1 000 
Static target this interval (from block 592583 on 31 August 2019) 2.6474E+054 

Average dynamic target for this interval 5.2978E+054 
Expected static target time (seconds) 1 209 600 
Expected adjusted interval time (seconds) 604 448 
Actual simulated time (seconds) 616 784 
Adjustment ratio 0.9800 
Static target next interval 2.7014E+054 
Expected static PoW hashes 8.8177E+028 
Expected nlPoW hashes 4.4063E+028 
Estimation of saving in the number of hashes (%) 50.03 
Discouraged miners (%) 0.00 

 
As a starting point, the simulated computational power of the network is derived from the 
selected static target and then randomly adjusted upward or downward during each block 
round by between 0% and 5%. These mimic the fluctuations in computational power as 
miners add resources to or withdraw resources from the network. At the end of the interval, 
an adjustment must be made to account for the net change of computational power over 2016 
blocks. The mechanism employed by nlPoW to achieve this is explained in Section 4.3.1. 

The estimated saving in the number of hashes executed over the interval is 50.03% 
which compares well with the expectation that the mean of the standardised random number 
for all miners during each block round should be 0.5. Since the dynamic target is larger than 
the static target, no miners are discouraged from mining under the assumption stated in 
Section 4.Since discouraging some proportion of miners is desirable, this shortcoming is 
addressed in Section 4.4 where the second method of using a uniformly distributed 
standardised number, to generate a random target for each miner, is discussed.  
 
4.3.1 Adjusting the Static Target 
Section 3.1 referred to the process whereby the static target (nBits parameter in the block 
header) is adjusted after every 2016 blocks to account for changes in the computational power 
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of the network. In this respect, the static target is nothing other than the estimation of the 
hash rate of the network. Under nlPoW, the mean of the dynamic targets over 2016 blocks 
represents a factor whereby the block creation time should be faster than 10 minutes. This is 
the same factor whereby the block creation time should decrease under nlPoW because 
proportionally fewer hashes are required. This estimated nonlinear completion time over 
2016 blocks can be compared to the actual completion time to compute a factor for the 
estimated increase or decrease of the network’s computational power over the last 2016 
blocks. By multiplying the static target by this factor, the new static target to be used as the 
basis for assigning dynamic targets for the next 2016 blocks, can be established. 

The block creation time over 2016 blocks (“Actual simulated time (seconds)” in Table 
3) was slower than the theoretical time ( “Expected adjusted interval time (seconds)” in Table 
3), the network’s hash rate is therefore deemed to have decreased, and the static target was 
adjusted upward (difficulty reduced). This adjustment is proportional to the ratio between 
the actual simulated time and expected adjustment interval time (“Adjustment ratio” in Table 
3) to yield a new static target for the next interval (“Static target next interval” in Table 3). 
 
4.4 nlPoW: Bidirectional random target assignment 
Bidirectional random target assignment seeks to discourage some of the miners from 
participating in some of the block rounds by decreasing the dynamic target (increasing the 
difficulty) based on the random number assigned to the miner. This is achieved by 
multiplying the static target by the random number if it is greater than 0.5. The opposite 
can be achieved by dividing the static target by the random number if it is less than or 
equal to 0.5, resulting in a larger dynamic target (decreased difficulty). The results of the 
simulation are shown in Table 4. 

Table 4: Simulated results for bidirectional dynamic target over one block adjustment 
interval 

Rounds 2 016 
Miners 1 000 
Static target this interval (from block 592583 on 31 August 2019) 2.6474E+054 
Average dynamic target for this interval 1.0590E+055 
Expected static target time (seconds) 1 209 600 
Expected adjusted interval time (seconds) 302 390 
Actual simulated time (seconds) 299 396 
Adjustment ratio 1.0100 
Static target next interval 2.6212E+054 
Expected static PoW hashes 8.8177E+028 
Expected nlPoW hashes 1.1014E+028 
Estimation of saving in the number of hashes (%) 87.51 

Discouraged miners (%) 50.04 

 
The results of bidirectional random target assignment were done on the same basis as the 
simulation in Section 4.3 with regard to fluctuating network computational power, number 
of miners and number of block rounds. The estimated saving in the number of hashes with 
bidirectional dynamic target assignment is 87.51%. 
 
 

5. DISCUSSION 
nlPoW requires that a random dynamic target is assigned to each miner during each block 
round. The two methods proposed in this paper relies on the generation of a uniformly 
distributed random number that satisfies the requirements named in Section 4.1. There are 
two ways to apply the random number to the static target to transform it into a dynamic 
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target, namely unidirectional target assignment (Section 4.3) and bidirectional target 
assignment (Section 4.4).  

Simulation shows that both methods will reduce the number of hashes required by the 
network and therefore, its energy consumption. Since unidirectional target assignment does 
not discourage mining by a proportion of the network, it is less effective than bidirectional 
target assignment. nlPoW provides a technique for adjusting the static target in response to 
changes in the computational power of the network by comparing the actual mean of the 
block solution times with the estimated mean solution times of the algorithm over a block 
target interval. 

Section 3.4 referred to the myriad of other types of consensus algorithms that are 
available for blockchain systems. For the purposes of this study, where the preservation of 
decentralised consensus is of concern, algorithms that rely directly on some form of 
centralised control over the network of participating nodes do not apply. These include all 
the voting-based algorithms and some proof-based algorithms like proof-of-entanglement 
(Bennet & Daryanoosh, 2019), proof-of-elapsed time (Nguyen & Kim, 2018), proof-of-luck 
(Nguyen & Kim, 2018) and proof-of-responsibility (Coinspace.com, 2019). 

Of the remaining types of proof-based algorithms, some exchange computing power 
(and therefore energy) with another resource such as memory, storage or human input 
(Blocki & Zhou, 2016; Dziembowski et al., 2015; Tromp, 2014). The authors argue that it is 
foreseeable that the same type of resource arms race, described in Section 3.3.1 would occur 
in a decentralised environment as it did with PoW in Bitcoin if they were implemented on a 
large scale. This may simply trade one type of problem for another. 

The most promising competitors for PoW seems to be the stake-based algorithms 
(proof-of-stake, proof-of-importance and delegated proof-of-stake) (Bentov et al., 2016; Hasib, 
2018; NEM, 2018; Zheng et al., 2017). These algorithms seek to limit the number of 
participating miners during each block round, which is in line with the aim of nlPoW, by 
ownership of blockchain tokens. Although the rules between these three algorithms vary 
slightly, they operate by allowing owners with larger proportions of the blockchain token, 
to mine a greater proportion of the transaction blocks. This may lead to hoarding strategies 
by miners and my in the long term reduce the randomness of the mining process and 
therefore its decentralised nature. 

nlPoW does not compromise on the decentralised nature of the consensus process. It 
still relies on computational power but seeks to discourage a computational arms race, by 
introducing significant uncertainty for any party that aims to invest in additional computing 
power simply for the sake of blockchain mining. nlPoW does not require the use of any other 
resource as named above and does not encourage the hoarding of blockchain tokens as a 
strategy to increase mining success. 
 
 

6. CONCLUSION 
The approach described in this paper establishes a new direction of research, whereby the 
energy wastage of PoW type consensus algorithms in blockchain systems can be addressed. 
It proposes the critical requirements for nlPoW that randomly distributes the targets 
(difficulty) of mining blocks on the Bitcoin blockchain between the population of miners. This 
approach aims to lower the number of hash calculations required by the network to create 
new blocks on the blockchain. Since the amount of energy required for Bitcoin mining is 
proportional to the number of hash calculations (Narayanan et al., 2016), the saving in energy 
usage is also directly proportional to the saving in hash calculations. 
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7. FUTURE RESEARCH 
Although early results from simulations of Bitcoin mining under nlPoW shows promising 
results, further research is needed to establish the optimal distribution of dynamic targets 
between the population of miners. The results, as presented in this paper, distributes dynamic 
targets uniformly between miners, which serves the purpose of casting light on the viability 
of the concept. The researchers are currently investigating other types of distributions to 
investigate if it may yield more optimal results. 

In this study, it was assumed that all miners possess equal computational power. In 
practice it is known that it has become infeasible for individual miners to mine Bitcoin with 
success (Eyal & Sirer, 2014), leading to alternative strategies like pooled mining (Tschorsch 
& Scheuermann, 2016). As a better understanding of nlPoW emerges, it will be necessary to 
investigate what effect pooled mining will have on the results. 

A simplistic approach was followed with regard to the establishment of the participation 
threshold for each miner. In practice, the decision-making process of every miner may be 
different and much more complex than assumed here. This needs specific attention in future 
studies. 
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