
Journal of Construction Project Management and Innovation, 14(1): 72-80, 2024 

DOI: 10.36615/1spds119 

ISSN 2223-7852 

 

72 

Determination of optimum shape of pinned parabolic arch 
structures under uniformly distributed loads: a blend of 

cost and functionality 
 

Victor M. Mbachu*1 and Victor O. Okonkwo2 
 

1Department of Industrial and Production Engineering, Nnamdi Azikiwe University, 

Awka, Nigeria 

 
2Department of Civil Engineering, Nnamdi Azikiwe University, Awka, Nigeria  

  

Email: vm.mbachu@unizik.edu.ng1; vo.okonkwo@unizik.edu.ng2 

 
ABSTRACT 
The construction industries are faced with multiple decisions that border around functionality 
and cost. Such a decision is made when considering the geometry of arches. In this work, 
hinged arch structures were examined under uniformly distributed static loads, and an 
attempt to find the best arch height for any given arch span was made. An optimum orientation 
of the elements of two-hinged parabolic arch structures was selected based on the 
manufacturing cost, which was adjudged by the volume of concrete consumed. Stress – strain 
analysis was used to compute the volume of the arch, while the usefulness or benefit of the 
arch was taken as the ratio of the frames' cross-sectional area to their perimeter. Graphs of 
the cost-benefit ratio against arch height f were plotted for different values of arch span, and 
the values of arch height corresponding to minima cost/benefit were obtained. These values 
were found to be independent of the ratio of the load to the product of arch thickness and 

grade of arch material (w/σb). A table showing the values of economic arch height for different 
values of arch span was presented, and a reliable model (polynomial equation) was developed. 
 
Keywords: Parabolic arch, economic arch height, arch cost, engineering economics, cost-
benefit ratio 

 
 
 

1. INTRODUCTION 
An arch is a structural system with a curved single branch topology supported on two 
external supports (Onyeyili 2003). Just like in cables, arches are used to reduce the bending 
moments on long span structures (Hibbeler 2006). Arches convert most transverse loads on 
it to compressive forces with very little bending moments. This is sometimes known as arch 
action (Vaidyanathan 2004). Arches could also be formed due to deformation occasioned by 
poorly distributed load on beams. According to Cucuzza et. al (2021a), limited deflection 
arching effects were observed while trying to minimize beam's weight and stress.  

Arch development was influenced by the construction materials available at a time 
(Tang, 2015). Because most constructional materials are good in compression, arches are 
considered a good structural assemblage. Arches can be semi-circular, semi-elliptic, 
segmental or parabola (Gupta and Gupta 2010). Arch construction in reinforced concrete 
occurs mainly in bridges but sometimes in roofs (Reynolds and Steedman 2001). In the 
classical periods arch bridges were a symbol of cultural heritage used to service roads, 
railways and waterways (Kumar and Vutukuru 2017). In modern times arch bridges have 
been constructed of iron and steel, concrete and their composite (Martinez 2004). The choice 
of a height to span ratio for an arch is largely dependent on the recommendation in the 
building's architectural drawings or the intuition of the design engineer. Studies by Altunisik 
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et al (2015) showed that arch thickness affects the displacements, tensile stresses and strains 
in masonry arches. The carrying capacity and deflection of a bridge is improved upon by use 
of a set of cables connecting the arch and the bridge deck, as seen in tield-arches (Garcia-
Guerrero and Jorguera-Lucerga, 2020). These might not yield an economic design. When 
economy is of prime importance, a parabola comes to mind because of its efficiency in 
converting all stresses to compressive force in the structural elements. Pouraminian and 
Ghaemian (2015) tried to determine the optimum geometry of an arch bridge structure using 
a Simultaneous Perturbation Stochastic Approximation. They realized that there could be 
savings of up to 35% in concrete volume when the structure is optimized. These were further 
buttressed in the works of other scholars (Lute et al., 2011; Baldomir et al., 2010). Mbachu 
et al. (2022) highlighted the importance of having an economic based comparative analysis 
for engineering feasible alternatives. In Cucuzza et al. (2021b), minimum steel consumption, 
which translates to minimization of manufacturing and construction cost, was identified 
following the determination of the cross sections properties of a steel arch shaped trusses 
using a genetic algorithm. Similarly, this work seeks to determine the most economic height 
for each span length of uniformly loaded two hinged arches. 

As far back as 1976, nonlinear systems of equations for optimal thrust, minimum length, 
and minimum volume were developed for an arch with specified span and loading (Farshad 
1976), although these were not solved. Since then, various works have been done in getting 
optimal height for a given arch span. The Prager-Shield criteria were employed to determine 
the optimal shape of hinged-hinge frames (of two rigidly connected inclined beams with a 
point load applied at mid-span). Here, an optimal height of the arch was determined to be is 
0.5*L (Rozvany et al. 1980). In the same year an automated design routine was used to 
determine optimal arch design, with the arch shape and cross-sectional dimensions allowed 
to vary. A numerical analysis of a uniformly loaded parabolic arch of constant depth and 
width was carried out, and the resulting relationship for the parabolic arch height (H) and 
span length (L) was found to be 0.342 * L (Lipson and Muhammad 1980).  

Few years later, the plastically designed non-funicular arches (of rectangular cross-
section) under a uniformly distributed load were investigated. This was solved by using 
spline functions and a smoothing function was also employed to approximate the non-smooth 
objective function (arch weight) for the parameterized unspecified arch axis (Ang et al. 1988). 
The optimum shape of the arch was found to be a parabola with a height of 0.433 times the 
span length, which is significantly different from Lipson's results above (Lipson and 
Muhammad 1980). 

By 1990, Charles Scott McDavid of the Naval Postgraduate School investigated the 
optimization of circular arches subjected to various loading and boundary conditions. He 
modelled the arches as systems of straight segments. He also proposed several further topics 
of research in this area (McDavid 1990). Ever since then several other research have been 
on, on the optimum geometry of arches. Notable is the work of Belevicius et al (2021) on the 
mathematical optimization of a light plane deck pedestrian bridge of 60m span to determine 
the least mass. He observed that some design recommendations for automobile and railway 
bridges are not fully applicable in pedestrian bridges. Wali et al (2021) also carried out the 
optimization of composite arch steel bridges depending on the arch flexibility. His analysis 
however was based on a second order effects using non-linear p-delta analysis. 

 
 

2. METHODS 
The internal stress equation for a parabolic arch structure under a uniformly distributed load 
was developed. The maximum stress in the arch structure was used to calculate the minimum 
depth of arch section that can resist such stresses. These depths were used to compute the 
volume of the arch structure. The cost of the arch structure was assumed to be directly 
proportional to its volume; hence, a cost coefficient Cc, which is a ratio of the Cost of the arch 
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to the product of its thickness and a proportionality constant K (cost/bK), was used as an 
estimation of its cost. K is actually the cost of a unit volume of the arch construction material. 
The usefulness or Benefit of the arch was expressed as the ratio of its area to perimeter (A/p). 
The economical arch structure is the one that will give the minimum cost/benefit ratio. The 
graphs of Cc/B against height (f) of arch were plotted for different values of the ratio of load 

to the product of arch thickness and material grade (w/bσ). The values of height (f) 
corresponding to minimum Cc/B were noted. Later these values of height (f) were plotted 
against L to obtain the relationship between the span of the arch L and the value of f 
corresponding to minimum cost benefit. These were fitted into a polynomial equation 
through a regression analysis to obtain an equation for finding the economical height for 
different values of arch span L. 
 
  
3. CALCULATION 
The arch chosen for the study is the moment-less arch governed by the polynomial: 

𝑦 =
4𝑓(𝐿𝑥−𝑥2)

𝐿2  . The depth of any section of the economic arch were computed such that the 

stress at any point on a section of the arch is not greater than the characteristic stress a or 

grade of the material of the arch. 

 

Figure 1. A uniformly loaded pinned parabolic arch showing the basic system and the redundant 
force Z1 

The basic system or reduced structure for the parabolic arch structure in Figure 1a is 
given in Figure 1b. The removed redundant force was depicted with Z1. The structure can 
be analyzed using the principle of virtual work. By applying the unit load theorem, the 
deflection in beams or frames can be determined for the action of bending moment with 

𝐷 = ∫
𝑀̅𝑀

𝐸𝐼
𝑑𝑠           (1) 

(McGuire et al. 2000; Nash 1998) 

Where 𝑀̅ are the virtual internal stresses while M is the real/actual internal stress. E 
is the modulus of elasticity of the structural material. I is the second moment of area of the 
beam section. 

If dij is the deformation in the direction of i due to a unit load at j then by evaluating 
equation (1) the following are obtained. 
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𝐸𝐼𝑑11 =
16𝑓2

𝐿6 ∫ (𝐿𝑥 − 𝑥2)2(16𝑓2(𝐿 − 2𝑥)2 + 𝐿4)
1
2

𝐿

0
𝑑𝑥       (2) 

The deformation at point 1 of the reduced structure due to external loads is given by 

𝐸𝐼𝑑10 =
−2𝑓𝑤

𝐿4 ∫ (𝐿𝑥 − 𝑥2)2(16𝑓2(𝐿 − 2𝑥)2 + 𝐿4)
1
2𝑑𝑥

𝐿

0
      (3) 

The structure's compatibility equations can be written thus 

𝑑11𝑍1 + 𝑑10 = 0                    (4) 

From equation (4) the redundant force Z1 is evaluated as 

𝑍1 =
𝑤𝑙2

8𝑓
             (5) 

To find the internal stresses at any point on the arch we superimpose the stresses on the 
basic system and the one generated by the redundant force 

𝑀 = 𝑀𝑜 + 𝑀1𝑍1                       (6a) 

𝑁 = 𝑁𝑜 + 𝑁1𝑍1                        (6b) 
Where M and N are the required stresses (bending moment and axial forces) at a point, 

Mo and No are the stresses at that point on the reduced structure, M1 and N1 are the stresses 
at that point when only the redundant force Z1 =1 acts on the reduced structure. 

By evaluating equation (6a) and (6b) at an arbitrary point x from the hinged support 

𝑀 = 0           (7) 

𝑁 = −𝑤 [
2𝑓(𝐿−2𝑥)2

√16𝑓2(𝐿−2𝑥)2+𝐿4
+

𝐿4

8𝑓√16𝑓2(𝐿−2𝑥)2+𝐿4
]       (8) 

The stress σ at a section of a loaded structural member is given by [8]  

𝜎 =
𝑀

𝑍
±

𝑁

𝐴
             (9) 

Where M is the bending moment at the section, N is the axial force in the member, A is 
the cross-sectional area of the member and Z is the section modulus of the cross-section.  

By substituting equation (7) and (8) into equation (9) and expressing d as the subject of 
the formula we have  

𝑑 =
𝑁

𝑏𝜎
                      (10) 

Since the stress σ is the grade of the material, N the axial force at the section, d is 
therefore the minimum depth of section that can overcome these internal stresses. It would 
be seen that d depends on the ratio of the internal stress N to the grade of the material. But 
under an elastic analysis of structures, the internal stresses are proportional to the load w; 
hence d is dependent on the ratio of the load w to the product of thickness and grade of 

material (w/bσ). 
The cost of an arch structure is proportional to its volume. For an arch structure made 

up of prismatic members the cost can be expressed as 

𝑐𝑜𝑠𝑡 = 𝐾𝑝𝑏𝑑                        (11) 
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where p is the length or perimeter of the arch, b is the breadth or thickness of the arch, 
d is the depth of the section and K is a constant of proportionality equivalent to the cost of a 
unit volume of the material of the portal frame. 

For an arch structure of uniform thickness b equation (11) reduces to  

𝐶𝑐 = 𝑝𝑑                       (12) 
where Cc is a cost coefficient equal to cost/Kb. 
The usefulness/benefit of an arch is obtained as the ratio of its area to perimeter. The 

less compact the arch is, the more beneficial it would be for a range of uses, hence 

𝐵𝑒𝑛𝑒𝑓𝑖𝑡 ∝
𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
                    (13) 

𝐵𝑒𝑛𝑒𝑓𝑖𝑡 =
𝐴

𝑝
                     (14) 

Where h is the height of the portal frame, L is the span of the portal frame (the constant 
of proportionality has been made equal to unity). 

The length of an arch is given by (Stroud 1995) 

 𝑦 = ∫ √1 + (
𝑑𝑦

𝑑𝑥
)

2
𝑑𝑥

𝐿

0
                        (15) 

For the parabolic arch structure governed by the equation  𝑦 =
4𝑓(𝐿𝑥−𝑥2)

𝐿2  , equation (15) 

can be evaluated to give 

𝑝 =
𝐿3

12𝑓2 [
16𝑓2+𝐿2

𝐿2 ]

3
2
                     (16) 

while the area of the arch is given by  𝐴 =
2𝑓𝐿

3
                  (17) 

 
 

4. RESULTS AND DISCUSSION 
The graph of Cc/B against arch height f for specific values of arch span L and load ratio 

(w/bσ) is a curve. The graph for an arch span length L = 4 and load ratio w/bσ = 0.001 is 
shown in Figure 2. From Figure 2 it would be observed that the graph has a minimum at a 
particular value of arch height (f). 

The values of arch height f corresponding to minimum cost benefit Cc/B are presented 

in Table 1 for the load ratio w/bσ = 0.001. These values were found to be the same for other 
values of load ratios, which show that the values of arch span corresponding to minimum 
Cc/B do not depend on the load ratio. In fact, when the graph of Figure 2 is plotted for other 
load ratios but with the same value of L, curves parallel to the one in Figure 2 are produced. 
The reason for this can be deduced from equations (8), (10) and (12). In equation (8), we see 
a linear relationship between the axial force N and the load w. From equation (10), we see a 
linear relationship between the depth of section of the arch d and the axial force in the arch 
N. In equation (12), we see a linear relationship between the cost coefficient and depth of 
section d. Therefore, there is a linear relationship between the Cost coefficient Cc and the 
load w. 
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Figure 2. Graph of Cost/ Benefit against Arch height f for a span length and load ratio of 

4m and 0.001 respectively 

Table 1. Values of economic arch height (f) for different values of arch span (L) when load 

ratio w/σb = 0.001 
L F L F 
2.0 1.38 13 14.81 

2.5 1.80 14 16.36 
3.0 2.25 15 17.96 
3.5 2.72 16 19.60 
4.0 3.21 17 21.28 
4.5 3.72 18 23.00 
5.0 4.26 19 24.77 
5.5 4.80 20 26.57 
6.0 5.37 21 28.42 
6.5 5.95 22 30.30 
7.0 6.55 23 32.22 
7.5 7.16 24 34.17 
8.0 7.79 25 36.16 
8.5 8.43 26 38.19 
9.0 9.09 27 40.25 
10 10.44 28 42.34 
11 11.85 29 44.47 

12 13.30 30 46.63 

 

Depending on the load ratio there is a maximum value of arch span L above which the 
corresponding economical height f becomes a constant. This can be observed in a plot of 
economical arch height f to arch span L for different values of load ratio shown in Figure 3.  
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Figure 3. Graph of Economic height against arch span for different values of load ratio Lr 

= w/σb 
 

These constant values of arch height f represent the maximum economical arch heights 
for those load ratios. The values for different load ratios and spans are presented in Table 2. 
From Table 2 it would be seen that the values of maximum economic arch height drop with 
increasing values of load ratio. 

 
Table 2. Values of maximum economic arch height (f) for different values of load ratios and 
their corresponding arch span (L) 

w/σb Max. f Corresponding L w/σb Max. f Corresponding L 

*0.001 - - 0.023 30.30 23 
0.002 51.05 33 0.024 30.30 23 
0.003 46.63 31 0.025 30.30 23 
0.004 44.47 30 0.026 30.30 23 
0.005 42.34 29 0.027 30.30 23 
0.006 40.25 28 0.028 30.30 23 
0.007 38.19 27 0.029 28.42 22 
0.008 38.19 27 0.030 28.42 22 
0.009 38.19 27 0.035 28.42 22 
0.010 36.16 26 0.040 26.57 21 
0.011 36.16 26 0.045 26.57 21 
0.012 34.17 25 0.050 26.57 21 
0.013 34.17 25 0.055 24.77 20 
0.014 34.17 25 0.060 24.77 20 
0.015 34.17 25 0.065 24.77 20 
0.016 32.22 24 0.070 24.77 20 
0.017 32.22 24 0.075 24.77 20 
0.018 32.22 24 0.080 23.0 19 
0.019 32.22 24 0.085 23.0 19 
0.020 32.22 24 0.090 23.0 19 
0.021 30.30 23 0.095 23.0 19 
0.022 30.30 23 0.10 23.0 19 
*The load ratio showed no maximum f for the range of L from 0 to 35. 
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The drop could be a result of an increase in the depth of section d that would normally 
accompany an increased load. A reduction in the corresponding span L was also observed. 
This, too is to lower the stresses N in the arch, hence resulting in a lighter and more 
economical arch. 

In order to obtain an equation for calculating the economical arch span f for every value 
of arch length, the results of Table I were fitted to polynomial curve via a regression analysis.  

𝑓 = 0.02326𝐿2 + 0.8848𝐿 − 0.5782                              (18) 
The polynomial above gave a coefficient of determination R2 of 0.998 which shows good 

fit. Further numerical validation of the goodness of fit is presented in Table 3. From Table 
3, it would be seen that the maximum error was 3.92% which shows that the polynomial is 
reliable. 
 
Table 3. Values of predicted arch height f and its % error  

L Predicted f Correct f % error 
3 2.286 2.25 1.60 
5 4.427 4.26 3.92 
7 6.755 6.55 3.13 
9 9.269 9.09 1.97 

11 11.969 11.85 1.00 
13 14.855 14.81 0.30 
15 17.927 17.96 -0.18 
17 21.186 21.28 -0.44 
19 24.630 24.77 -0.57 
21 28.260 28.42 -0.56 
23 32.077 32.22 -0.44 
25 36.079 36.16 -0.22 
27 40.268 40.25 0.045 
29 44.643 44.47 0.39 

 
 

5. CONCLUSION 
The determination of the geometric shape of the arch structure is chosen arbitrarily in 
building structures by architects based on aesthetics, which is without economic 
considerations. In this work the parabolic arch produced minimum bending moment (M = 0) 
and so completely eliminates tensile stresses in the arch. With equation (18), the best arch 
height f can be calculated for any arch span L. Thus, the work provided a model for design 
of arch structure that fulfils the functionality and cost demand on the design, by providing 
optimum geometry based on cost/benefit ratio from the feasible alternatives that satisfies all 
the functional constraints. 
 
 

REFERENCES 
Altunisik, A. C., Kanbur, B., and Genc, A. F. (2015). The effect of arch geometry on the structural 

behavior of masonry bridges, Smart Structures and Systems. 16(6), 
DOI:10.12989/sss2015.16.6:1069 

Ang, B.W., Teo, K.L., and Wang, C.M. (1988). Optimal Shape of Arches under Bending and Axial 
Compression. Journal of the Engineering Mechanics Division, ASCE, 114, 898-905. 

Baldamir, A., Hernandez, S., and Nieto, F. (2010), Cable optimization of a long span cable stayed bridge 
in La Coruna, Advances in Engineering Software, DOI: 10.1016/j.advengsoft.2010.05.001 

Belevicius, R., Juozopaitis, A., Rusakeviciu,s D., and Zilenaite, S. (2021). Parametric study on mass 
minimization of radial network arch pedestrian bridges, Engineering Structures, 237, 112 – 182 
Elsevier, DOI:1016/j.engstruct.2021.112182 

Cucuzza, R., Rosso, M. M., and Marano, G. C. (2021). Optimal preliminary design of variable section 
beams criterion. SN Applied Sciences, 3(8), 745. 



Mbachu and Okonkwo  JCPMI, 14(1): 72-80  

80 

 

Cucuzza, R., Costi, M., Rosso, M., Domaneschi, M., Marano, G. C., and Masera, D. (2021). Optimal 
strengthening by steel truss arches in prestressed girder bridges. Proceedings of the Institution of 
Civil Engineers. Bridge Engineering. pp 1 - 21 https://dx.doi.org/10.1680/jbren.21.00056  

Farshad, M.(1976). On Optimal Form of Arches. Journal of the Franklin Institute, 302(2), 187-194. 
Garcia-Guerrero J.M, and Jorguera-Lucerga J.J (2020). Improving the structural behavior of tied-arch 

bridges by doubling the set hangers, Applied Sciences, DOI:10.3390/app10238711 
Gupta, B. L.,and Gupta, A. (2010). Highway and Bridge Engineering. A K Jain for Standard Publishers 

and Distributors. India 
Hibbeler, R. C.(2006). Structural Analysis. Sixth Edition, Pearson Prentice Hall, New Jersey 
Kumar, R., and Vutukuru K. S. (2017), Analysis of Retrofitting of Arch Bridges- A review, 

International Journal of Bridge Engineering (IJBE), 5(2), 113 – 138. 
Lipson, S.L., and Muhammad, I.H., (1980). Optimal Design of Arches using the Complex Method. 

Journal of the Structural Division, ASCE, ST12, 2509-2525 
Lute, V., Upadhyay, A., and Kumar Singh K. (2011). Genetic Algorithm based optimization of cable 

stayed bridges, J. Software Engineering and Application, 4(2001), 571 – 578, 
DOI:10.4236/jsea.2011.4.10066 

Martinez SPF (2004). Evolution and future trends, Arch Bridges IV, Advances in Assessment, 
Structural design and construction, CIMNE, 11-25, Barcelona. 

Mbachu, V. M., Muogbo, G. A., Ezeanaka, S.O., Ejimchukwu, E. O., and Ekwunife, T. D. (2022). An 
Economic Based Analysis of Fossil Fuel Powered Generator and Solar Photovoltaic System as 
Complementary Electricity Source for a University Student's Room. Journal of Solar Energy 
Research, 7(4), 1159 – 1173. doi:10.22059/jser.2021.332724.1225 

McDavid, C.S. (1990). Weight Optimum Arch Structures. Master's Thesis, Naval Postgraduate 
School, Monterey, CA. 

McGuire, W. and Gallagher R. H., Ziemian, R. D. (2000). Matrix Structural Analysis, Second Edition, 
John Wiley and Sons, Inc. New York. 

Nash, W.,(1998). Schaum's Outline of Theory and Problems of Strength of Materials. Fourth Edition, 
McGraw-Hill Companies, New York 

Onyeyili, I. O. (2003). Analysis of Statically indeterminate Structures, El Demak Publishers 
 Enugu, Nigeria 

Pouraminien, M., and Ghaemian, M. (2015), Shape optimization of concrete open squandrel arch 
bridges, GRADEVINAR 67(12), 1177-1185, DOI:10.14256/JCE.1223.2015 

Reynolds, C. E., and Steedman J. C. (2001). Reinforced Concrete Designer's Handbook, 10th Edition) 
E&FN Spon, Taylor & Francis Group, London 

Rozvany, G.I.N., Wang, C.M., and Dow, M. , (1980). Arch Optimization via Prager-Shield Criteria. 
Journal of the Engineering Mechanics Division, ASCE, 106, pp. 1279-1286 

Stroud K. A.(1995). Engineering Mathematics. Fourth Edition, Macmillan Press Ltd, London 
Tang M. (2015). The art of arches, Structure and Infrastructure Engineering, 11(4), 443 – 449, 

DOI:10.1080/15732479.2014.951858 
Vaidyanathan, R. (2004). Structural Analysis, Vol.2, Laxmi Publication, USA 
Wali R. F., Muteb H. H., and Hadi A. S. (2021). The influence of arch flexibility on the floor deck 

structural characteristics for composite arch steel bridge, IOP Conference Series: Material Science 
and Engineering, 1090. DOI:10.1088/1/1757-899X/1090/1/012111 

 


