Public Sector Contracting Model for Management of Construction Tender Price Volatility

Moffat Tembo^{*1}, Charles Kahanji² and Erastus Misheng'u Mwanaumo³

^{1&2}Department of Civil and Environmental Engineering, University of Zambia, Zambia ³Department of Civil Engineering, College of Science, Engineering and Technology, University of South Africa

*Email: tembomoffat@yahoo.com

ABSTRACT

Construction tender price volatility threatens desirable infrastructure push in the public sector. The damaging effects of escalating tender prices outweigh the socioeconomic benefits of such infrastructure. If not addressed, this harmful effect destroys construction sector productivity, causing it to lag behind other economic sectors, thereby decreasing its value in the national economy. Contractors use price to mitigate procurement and client-related risks at the tendering stage. The trend requires developing and implementing procurement strategies that consider price control implications at the project tendering phase, leading to the development of contract delivery models that inadequately address the impact and potential value of pricing in construction projects. This research focuses on implementing procurement strategies by developing a public sector contracting model considering price reduction implications at the project tendering phase. The study investigates pricing behaviours regarding implementing current contracting delivery models in Zambia and develops a conceptual model for managing tender price variability in the public construction sector. The study achieved this through a comprehensive literature review followed by semistructured interviews with 14 purposively and snowball-sampled industry experts. The study utilises person-to-person interviews to collect data from interviewing 14 purposive identified respondents to attain relevant research results. The findings show that governments can maximise social gains from an infrastructure project by deriving accurate technical parameters and optimising procurement. The study identifies four pricing behaviours demonstrated by contractors during tendering: resistance, reactive, anticipatory, and Consultant-based. Consultant-based pricing was the least practised behaviour, whereas reactive was the most established among all behaviours. Emergent patterns for turnaround strategies include cost estimating and financing, mitigating external and internal interferences, providing incentives, providing training, and encouraging innovations. Others include revising legislation, contextualising procurement functions, improving project management practices, predicting market forces, and guaranteeing sustainability. The study further proposes the conceptual Negotiated Construction Approach (NCA) for public projects that summarises and weaves together identified strategies.

Keywords: Construction, contracting model, public sector, tender price

1. INTRODUCTION

Despite the spate of studies aimed at improving construction management practices in Zambia, difficulties still plague the construction industry (Zulu and Muleya, 2018; Zulu et al., 2022; Tembo et al., 2023a; Aigbavboa et al., 2018; Silwimba and Mwiya, 2017; Cheelo and Liebenthal, 2018; Chilongo and Mbetwa, 2017; Chiponde et al., 2017). Notable studies (particularly those by Zulu et al., 2022; Sibanyama et al., 2012; Tembo et al., 2023b) have identified challenges associated with implementing public projects. The public construction sector in Zambia formally exhibits relationships governed by contracts. However,

accompanying these relationships between the government and the contractors are informal practices that progress to characterise unforeseen project implementation difficulties.

Tender price variability profoundly influences the financial sustainability of the construction sector. Joukar (2016) and Tembo et al. (2023a) discussed the challenges associated with tender price variability in construction. Tembo et al. (2023a) demonstrates that the effects of the management of tender price volatility are across multiple fundamental dimensions, including the government, the contractors, the industry, the procurement, and the legal framework. Public sector project delivery does not realise how to use the synergies between procurement or contracting activities and existing market risks to manage the tender price. Therefore, public sector institutions use generic procurement and contracting strategies that do not reflect specific national responses to challenges regarding construction price volatility. These contracting strategies often lack precise specifications, reflecting national construction tender price difficulties, among other things. The study aims to develop a unique contracting model for public sector construction project procurement in which price and quality control are critical. This research, therefore, adds to the scientific knowledge, eventually informing management practice in the public construction sector and consequently providing strong empirical and theoretical support to tender price-oriented research. The study investigates factors affecting tender price determination in construction and current tender price controls in practice. The paper carries with it a particular focus on contractors' prices for construction at tendering and highlights influential risk-related factors.

The study predicates that contractors use price to mitigate procurement-related risks at the tendering stage. Further, this research focuses on implementing procurement strategies considering price reduction implications at the project tendering phase. Ignoring this construction attribute leads to the development of contract delivery models that inadequately address the impact and potential value of pricing in construction projects. Therefore, they fail to establish possible strategies to overcome tender pricing variability.

2. LITERATURE REVIEW

The construction sector uses construction cost or tender price indices to monitor price movements. This monitoring measures relative change over time in construction materials prices. Cruywagen (2014, p. 25) argues that several "factors influence the establishment and composition of the relevant tender price index." Such factors include the availability of data, selection of items to consider from the bills of quantities, selection of base year or period, choices of weights, and construction method. All these factors begin to affect the accuracy of the index. Once established, the index works as a deflator for construction prices. In a free market, the bidder presents an item price uniquely dependent on the construction technique (Cattell, et al., 2010). Through a literature review, this paper aims to identify better, more effective, and more informed scientific fundamentals for price management by contractors and clients.

2.1 Tender price inflation and volatility in Zambia

Zambia struggles with construction price inflation, hallmarked by a general increase in prices of works over time (Olabisi, 2022). Historic perceived increases in construction prices and project spending contribute to unsustainable infrastructure development costs in the country. While drivers of variable construction tender prices need further documentation and studying, impacts are already noticeable. Trapped in the government's push for development are citizens of whom too many question the benefits of, or who benefits from, undertaking these public projects. In addition, society is concerned about how a government affords such spending considering the complexity and diverse nature of the sector, making it challenging to address variable tender prices while encouraging infrastructure development programs. Over nine years, Tembo et al. (2023b) identified and analysed tender pricing behaviours for upgrading roads to bituminous standards. They noted between 2012 and 2021, tender prices for periodic maintenance of feeder roads increased by an average of 49.7% per annum. For unpaved roads (periodic maintenance), construction tender prices increased by K1,461,018.8/km from K1,438,825.8/km in 2012 to K1,623,899.1/km in 2021, as shown in Figure 1.

Figure 1: Construction tender prices for periodic maintenance of feeder roads (2012-2021) (adapted from Tembo et al. 2023b, p. 35)

2.2 Factors affecting tender price management

Tender price management is an essential consideration for bid success; however, complex pricing interrelationships make it much easier to generally express construction project success in terms of cost and budget variance (Yismalet & Patel, 2018). This trend, over time, has shifted the long-term focus to project cost management processes. In addition, research shows that project success depends on mitigating factors affecting tender pricing at the procurement stage. Aje et al. (2016) determined fifteen (15) factors that influenced the success rate of contractors in competitive bidding concerning tender price, which included material availability, labour productivity, and profit as the most significant. These factors highly influence construction tender price (at the tendering stage) and later significantly affect contractors' performance.

Construction projects face numerous unpredictable factors. Gudienė et al. (2013, p. 397) identified and classified these factors into seven influential groups: "external factors, institutional factors, project-related factors, project team management-related factors, project manager-related factors, client-related factors, and contractor-related factors." To investigate how these factors influenced the success of a construction project, they developed a conceptual model that grouped the project success factors. However, they did not perform a factor analysis to investigate the underlying relationships among the elements. Project price is not among the factors identified for a possible multi-criteria analysis of alternatives for selecting a successful project.

Factor(s)	Postulation	Author
Nature of competition	Firms raise prices in competitive markets	Chalkidou, et al. (2020)
Inflation rate	The inflation rate helps predict the bid price	Oghenekevwe, et al. (2014)
Macroeconomic	Price volatility is dependent on macroeconomic	Alireza, et al. (2016)
factors	factors	
Material cost	Construction prices are a function of many	Gransberg and Kelly (2008), Al-
	factors, including material costs	Zarrad, et al. (2015), Tembo-
		Silungwe and Khatleli (2017),
		Ramanathan et al. (2012)
Profit margin	Adopting high prices has a direct and positive	Toni et al. (2017)
<u>c</u> . c	impact on profit margin	T (4) (2015)
Size of a construction	Larger companies have a greater capacity to	1 oni et al. (2017)
Reputation of alignt	Contractors inflate tender prices for clients	Vo and Abdul Pahman (2010)
Reputation of cheft	reputed for delayed navments	Te and Abdul-Rahman (2010)
Level of construction	A boom in construction activity is significantly	Cruywagen (9014)
activity	associated with a general increase in	Cruywagen (2014)
activity	construction prices	
Unbalanced bidding	The practice of unbalanced bidding comes as a	Skitmore and Cattell (2013)
0	possible added cost to the project	(),
	Unbalanced bidding contaminates the database	Molenaar, et al. (2011)
	of previous tenders that clients often use to	
	establish and estimate the cost of a project	
	Unbalanced bidding is a common practice by	Cattell, et al. (2007)
	contractors in determining prices in	
	construction	
Degree and level of	The level of competition has an impact on the	Lawrence (2003)
competition	bid price	~
Nature of	The nature of construction is critical in the	Lawrence (2003)
construction work	development of bid price	
Number of	The number of participants has a direct impact	Raventos and Zolezzi (2015)
Prioing policies	On the blodders final price	Topi et al (2017)
r neing policies	an organisation	1011 et al. (2017)
Experience in a	Emerging contractors exhibit inadequacies in	Seeletse and Ladzani (2012)
construction company	tender price estimation	Secretise and Daubann (2012)
Engineer's estimate	Benchmarking engineer's estimate during the	Su et al. (2020)
0	evaluation of bids	
Project quality level	The increase in price offered by the client	Yu et al. (2013)
	encourages contractors to provide a better-	
	quality product	
Direct cost drivers	Cost drivers are crucial in the compilation of	Seeletse and Ladzani (2012)
(Labor, equipment,	tender price	
plant, etc.)	Y . 1 11 . 11	
1. Reduced	It is hardly possible to construct lower prices	Grega and Nemec (2015)
bureaucracy,	with a higher corruption rate, high	
z. nigher corruption	bureaucracy, and poor business environment	
3. poor business		
environment		
Procurement method	The procurement method is a significant	Ali (2018)
	qualitative factor affecting project cost	
Exchange rate	The exchange rate is the leading indicator that	Morina, et al. (2020)
volatility	influences the price of goods and services	
Regulation and	Price floor regulations have long-term effects	Carranza, et al. (2015)
control	on the structure of the market by creating	
-	endogenous barriers that can even lower prices	
Dependency on	Import tariffs have an almost immediate effect	Amiti et al. (2019)
imported materials	on prices	
Interest rate	Changes in the interest rates affect	Li Suyuan and Khurshid (2015)
1	macroeconomic variables such as price level	

 Table 1: Factors affecting tender price in construction

Globalisation	The integration of world markets has general equilibrium implications on product's relative prices	Farahane and Heshmati (2020)
Location and control of the site	 Cost estimating is used more for project control than planning and evaluation The project location is one of the significant factors affecting the accuracy of cost estimation 	Akintoye and Fitzgerald (2000)
Tender duration	If the timeframe is inadequate, contractors will lack time to carry out a proper analysis of the project, thereby leading to contractors overpricing their tender to make up for unforeseen risks	Knowles (1997)

2.3 Risk-related factors during pricing in construction

Evaluating bids is through a variety of criteria, but the key shared among the criteria is the total bid price; usually, considerations are that choosing a bidder with the lowest price is most beneficial to the client (Jaśkowski & Czarnigowska, 2019). All while overlooking facts that the practice results in low quality of works, claims, disputes, time overruns, bid-rigging, increased costs, unrealistically low prices, and collusion. There are related factors in the pricing of each item in construction (Azizi & Aboelmagd, 2019). The main challenges to contractors come with identification methods by which the risk rate can be measured within an item price loading and achieving the highest profitability while accepting the most negligible risks (Azizi & Aboelmagd, 2019). Another concern when pricing for a bid is that the awarding of a construction contract depends on the total bid price. Especially without considering the variations in the item's unit price, a scenario in which contractors deliberately manipulate unit actors (Nikpour, et al., 2017). Olawale and Sun (2010) found that price inflation was one of the significant factors that affected cost control on a project. Furthermore, they argued that price fluctuation and inaccurate estimates were the top variables causing cost overruns on a project.

The ability to deploy strategies productively and effectively has a cost-decreasing impact. In the public-construction sector, developing and setting appropriate tender conditions following an in-depth investigation of how the factors affecting pricing mechanisms correlate enhance this ability. Table 1 show factors obtained through the literature review that affect bid pricing decision in the construction sector. When risk factors are uncertain on a project, contractors face the challenge or problem of deciding the bidding price for construction. The existing theoretical principles of project risk management lack more realistic considerations. This situation leads to unclearly allocated and unreasonably priced risks at the project onset (Zhang, et al., 2006). At the tendering stage, one of the main risks for consideration is the financial position of the client in such a manner as being unable to pay the contractor on time, A scenario often leading to project delays and wrong cost estimations (Naji & Ali, 2017). The failure of a construction firm to fully consider or estimate the risk event on a construction project could have a disastrous impact. Construction enterprises are conscious of this scenario, and due to a lack of appropriate knowledge on risk pricing and mitigation measures, they often subsequently overestimate their markups. This practice causes construction prices to escalate over time.

Laryea and Hughes (2008) found no evidence suggesting that construction project pricing was systematic. Therefore, they doubted the justification of pricing models for contractors as their final price depends on a varying range of complex microeconomic indicators and risk factors. The argument is on efficient pricing for risk while encountering and estimating various contingencies. Contractors remain aware of the nature of the construction industry in which all competitors are "hungry for a job" such that if they were to consider and price for all realistic contingencies, they would remain uncompetitive. Table 2 shows some risk factors contractors must contend with during bidding pricing.

Table 2: Risk-related factors during pricing in construction

Risk factor(s)	Author		
Value of liquidated damages	Towner and Baccarini (2012)		
Clients' financial state	Naji and Ali (2017)		
Project cost risk (range between 2.7% and 8.7% of project cost)	Xu (2014), Brokbals, et al. (2019)		
Technical information or detailed specifications	Nketekete, et al. (2016)		
Practical knowledge of the construction process	Akintoye and Fitzgerald (2000)		
Contractor size	Dulaimi and Shan (2002)		
Market competition	Laryea and Hughes (2008)		
Contingency additions	Dada and Jagboro (2007)		
Apportionment of contractual responsibilities	Al-Ajmi and Makinde (2018)		
1. Material availability	Aje et al. (2016)		
2. Labor productivity			
Project scope	Dziadosz et al. (2015)		

Source: Authors' compilation

2.4. Contracting delivery models in construction

Paek and Lee (1993) proposed a risk pricing method for analysing and pricing construction projects, which consisted of identifying risk factors and pricing for their consequences. They suggested using a fuzzy set approach to quantify the implications and directly incorporate them into the bid price. Their research developed a framework for assisting contractors in making valid estimations in uncertainty through their risk-pricing method. They adopted a fuzzy set theory to present a risk-based pricing algorithm and computer-based software. However, since the selection of risk factors is project-specific, the algorithm could not formulate generalisations. Therefore, it is advisable to price all risk elements whose consequences might fatally flaw the project identification during the tendering phase (Paek & Lee, 1993). However, Laryea and Hughes (2008) argued that most models and pricing methods are desk-based and lack knowledge of what contractors do during the bid pricing stage.

The dilemma with competitive bidding is that the bid price must be low enough to win the bid yet high enough to ensure the contractor's profitability and reasonably sufficient to guarantee the quality of work. That is when the cost estimation function becomes essential, as it is the basis for most contractors to build their tender price (Akintoye & Fitzgerald, 2000). It is equally imperative to note that the availability of funds influences the client's decision to award a contract, the contractor's price, as well as prices of other contractors. Excessively, the parties in construction view construction price through the understanding of and emphasis on project cost. Hence, related approaches to price control are cost control measures through contracting delivery models (Table 3). Clients resort to employing delivery models such as EPC to manage construction prices and are slightly more regular (Zhong, 2011).

2.5. Effects of a contracting model on cost level

Initiating procurement quality controls generates improved competitiveness from a price viewpoint through the value-added competencies of the procurement function. In construction, procurement quality controls allow for significantly high procurement performance, leading to the best possible price to meet the client's needs (Munyimi, 2019). However, procurement functions in the public face numerous challenges. Unique challenges include a significant lack of empirical research on the impact of public procurement systems on price or cost levels in the construction sector. However, Gray et al. (2020) argue that current procurement decisions are too focused on cost minimisation at the expense of stakeholder value. They propose a new approach known as "total value contribution" as an

extension of "total cost of ownership" methods that broaden the factors during a procurement exercise. They argued that putting value first through procurement would increase organisational outcomes. The effects of a contracting model in construction are summarised as follows (Gray et al., 2020; Munyimi, 2019)

- i. Improved organisation outcome
- ii. Improved firm interrelations
- iii. Betterment of society
- iv. Improved project performance
- v. Improved value for money

Table 3: Contracting delivery models in construction

Contracting	Practice	Success factors	Cost control	Author(s)	Constraints
model			measure		
Engineering, procurement, and construction (EPC) model	The contractor takes control of engineering, procurement, and construction and takes full responsibility for the quality, safety, construction cost, and construction period	 Address time constraints in project delivery Utilisation of contractors' design capabilities and technical experience Single point responsibility 	Preventive	Zhong (2011)	1. Enhanced difficulties in client's control of project price due to reduced participation
Engineering, procurement, and construction management (EPCM) model	The contractor takes control of the designing and management of the project for the client on a reimbursable basis	 Pays on actual costs basis at pre- agreed rates Multiple point responsibility 	Organisational	Fentona, et al. (2016), Altemirova and Burenina (2021), Chattopadhy ay and Mo (2010)	 The client bears responsibility for cost overruns and outturns Not ideal if social and technical issues characterise the client
Project Management Contractor (PCM) model	The client engages a contractor or a project manager to assist with management aspects of the project delivery process	 Efficient project management Efficient cost estimation strategies Efficient knowledge- sharing management Realistic correlation between cost and quality 	Organisational	Tatum (1979), Golini, et al. (2017)	1. It does not guarantee the overall price or quality of the project
Early Contractor Involvement (ECI) Model	Involves procuring a contractor in the preliminary design stage of the project	 Allows for contractors' contribution and influence on a major decision Transfer of manageable risks to the contractor 	Organisational	Wondimu, et al. (2016), Walker and B. Lloyd- Walker, (2012), Finnie, et al. (2018), Penn, et al. (2017), Opoku and	1. Late consideration of price elements creates an opportunity for price manipulation in the second stage

8 Embrand	Thurshing	a Tha annua a h
3. Enhanced	Ibranim-	2. The approach
understandin	Adam (2018),	focuses on
g between	Botha, et al.	establishing
client and	(2020),	better
owner	Lefebvre and	relationships
	McAuley	and increased
	(2019),	understanding
	Sanchez, et	among parties
	al. (2015),	3. The
	Botha and	contractor's
	Scheepbouwe	interest in
	r (2015)	participating
		is dependent
		on
		compensation
		amounts

Initiating procurement quality controls generates improved competitiveness from a price viewpoint through the value-added competencies of the procurement function. In construction, procurement quality controls allow for significantly high procurement performance, leading to the best possible price to meet the client's needs (Munyimi, 2019). However, procurement functions in the public face numerous challenges (See Table 4). Unique challenges include a significant lack of empirical research on the impact of public procurement systems on price or cost levels in the construction sector. Gray et al. (2020) argue that current procurement decisions are too focused on cost minimisation at the expense of stakeholder value. They propose a new approach known as "total value contribution" (TVC) as an extension of "total cost of ownership" (TCO) methods that broaden the factors during a procurement exercise. They argued that putting value first through procurement would increase organisational outcomes.

Challenge(s)	Author
Failure to implement a procurement system	Fourie and Malan (2020)
Inadequate policy and lack of innovation	Uyarra and Flanagan (2009)
Inability to implement change management	Ateto et al. (2013), Mohamed (2016)
Poor organisational structures and processes	Tsuma and Kanda (2017)
 Poor procurement planning 	Onyango (2014), Musa, et al. (2014), Ambe and
Lack of procurement competence	Badenhorst-Weiss (2012)
Inadequate specifications	Munyimi (2019)
Corruption	Eyo (2017), Ambe and Badenhorst-Weiss (2012)
Excessive Bureaucracy	Boatemaa-Yeboah (2019), Sukasuka and Manase
Political interference	(2016), Musa, et al. (2014)
Inadequate or lack of ICT infrastructure	Riziki (2018), Modisakeng, et al. (2020), Maleki, et
	al. (2020)
Failure to ascertain value for money	Sukasuka and Manase (2016)
Poor organisational culture	Musa, et al. (2014), Kiama (2014)
Lack of project management skill	Kabanda, et al. (2019)
Poor resource allocation	Hamza et al. (2016)
Lack of transparency	Anane and Kwarteng (2019), Pooe, et al. (2015)
Lack of training	Pooe et al. (2015)
Lack of capacity	
• Failure to comply with procurement policies	
Procurement malpractices	Kedir and Ganfure (2020)
• Lack of knowledge	Rais, et al. (2018), Ngunjiri (2019), Ambe and
• Knowledge gap	Badenhorst-Weiss (2012)
Inadequate monitoring and evaluation	Ambe and Badenhorst-Weiss (2012)
 Noncompliance with regulations 	

Table 4: Challenges faced by public procurement

 Over-decentralisation of a procurement system Lack of accountability 	
Instability generated by electoral cycles	Delmonico et al. (2018)
 Lack of prioritisation Tendency to maintain current practices 	Durdyev et al. (2018), Blanco-Portela, et al. (2018)
Lack of long-term planning	

2.6. Conceptual framework

The literature shows that tender price volatility is influenced by a host of qualitative factors that include but are not limited to the construction price level, procurement strategy, project management practices, project-related risks, corruption, political interferences, adopted pricing models, stakeholder management strategies, political policy, and extant legislative framework (Zulu et al., 2022; Tembo et al., 2023b). Price volatility is propagated further by a situation in which contractors have become more informed than the client (government). Contractors have an exaggerated understanding of cost impacts that create information disproportionateness with clients (Tembo, et al., 2023a). Contractors skew unit prices and enhance profits by increasing the unit price of a quantity expected to go up and lowering the unit price of a portion expected to decrease. This predicament requires the government as a client to optimise trend detection using already developed models. However, this requires empirical studies that capture the magnitude of the problem in Zambia's context. Unit price contracting is widely used in Zambia's public construction sector. Unbalanced bidding is one potential pitfall of unit price contracting (Nyström, 2015). It manifests by the client/government paying too much for the final construction product. The research will use the frameworks (both abstract and theoretical) to ascertain its academic position and make the findings more appreciable as contributing to the body of knowledge. Figure 2 presents the conceptual framework guiding this research.

Figure 2: Conceptual Framework (Source: By the authors)

3. METHODOLOGY

The study concepts a novel public construction approach for making consistent mitigatory procurement decisions for tender price volatility. The study aims to investigate pricing behaviours regarding implementing current contracting delivery models in Zambia and develop a conceptual model for managing tender price variability in the public construction sector. The study achieved this through a comprehensive literature review and semi-structured interviews with 14 industry experts.

3.1 Sampling and sample size

The study employed a purposive sampling method to identify possible interview participants (Martínez-Mesa et al., 2016). In addition, the research utilised snowball sampling in which existing respondents recruited or referred other respondents from among their professional acquaintances. The study ensured that the nominated subjects and the generated pool of participants exhibited traits similar to the purposively sampled ones. Table 5 shows the details of the interview participants. The study utilised person-to-person interviews to collect data from 14 interviewees identified respondents through purposive sampling for better insights and a more thorough investigation. It allowed information collection from the best-fit participants to attain relevant results for the research context. The adopted method presented the study with information-rich participants and cases regarding issues of central significance to the phenomena of inquiry. The study transcribed recorded interviews for coding and eventual analysis.

All respondents were construction project managers with a holistic understanding and experience regarding the construction sector and its various aspects. The selection of respondents reduced the selection bias while improving the representativeness of the sample categories. Among the respondents, one had a PhD, two had bachelor's degrees, and eleven had master's degrees. Practical research shows that a qualitative sample of twelve (12) interview participants was adequate to reach theoretical data saturation (Braun and Clarke, 2016; Boddy, 2016; Guest et al., 2006). The selection method for the inclusion of participants for research interviews defined the characteristics of potential participants in the study. The criteria ensured the participants were relevant enough to provide the necessary information to address research objectives. The requirements were as follows:

- i. Age of the participant All participants were required to be old enough to provide legal consent, typically above 18 years old.
- ii. Professional past of the participant The study considered relevant constructionsector details about participants' professional and personal lives. Ensured that participants were essentially actively practising professional aspects related to the construction sector
- iii. Academic qualifications The study verified participants' academic qualifications or educational background to ensure they had at least a bachelor's degree related to aspects of the construction sector.
- iv. Active years of practice The study included participants with at least ten years of practice within the construction sector. Therefore, the study evaluated people in the construction sector-related fields for more than ten years.
- v. Management position of the participant The participant owns a constructionsector-related company or has been in senior management for a period longer than five years

3.2 Data collection technique

The study adopted qualitative research that followed an exploratory design to understand decisions and opportunities regarding construction-tender price inflation. The technique allowed the study to focus the collection of data on a small number of respondents by asking questions through open-ended person-to-person interviews and observing the behaviour of respondents. This approach was essential in ensuring timely data collection and accuracy and gaining rich-preliminary insights. The exploratory research design was significant for the study to understand the phenomenon and define the problem precisely (Sreejesh, et al., 2014). The study deployed unstructured procedures for primary data collection, including in-depth

interviews and project procurement techniques. The discussions used direct techniques to obtain data on respondents' beliefs, feelings, and attitudes. The design assisted the study in probing for attitudinal and behavioural data encompassing all past, present, and future periods by turning respondents' answers into related detailed questions. The interviewing techniques utilised in this study included:

- i. laddering which allowed the study to discover meanings and psychological and emotional motives that affected the respondents' decision-making behaviours (Veludo-de-Oliveira, et al., 2006)
- ii. hidden-test questioning which focused on finding share-social values, personal beliefs, and attitudinal concerns (Buschle, et al., 2021)
- symbolic analysis which utilised deductive reasoning to unravel symbolic meanings associated with construction-tender prices (Lune and Berg, 2017; Bengtsson, 2016)

The study utilises an ontology of a social world populated by human beings with thoughts, meanings, and interpretations. Thus, the study used interviews as an interpretive design to obtain respondents' experiences, inner thoughts, and feelings. The study assumed a realist ontological (inner-world focus) assumption of a physical world influenced by cause and effect (Berryman, 2019). The research believed in the existence of realities that affect construction tender price inflation and hence emphasised exploring circumstances related to what happened or what was happening to seek explanations. The study intends to predict what might happen in the future of construction following certain-specific interventions.

3.3 Data analysis

The descriptive data analysis utilised abductive and deductive reasoning through systematic, iterative searching and integrating data, as shown in the detailed research onion in Figure 3. The research attempted to describe the meaning of findings from the respondents' perspective and develop significant generalisations from a limited number of experts and specific experiences. The study attempted to explain specific factors, away from those in the broader economy, contributing to construction tender price volatility and underscore how such connections or relations occurred. To propose strategies for addressing construction tender price inflation demanded providing a factually accurate viewpoint of participants concerning the characteristics and nature of their relationships in the construction market. The study presented the findings as verbal accounts and narratives of lived experiences gathered through interviews. The study utilised thematic analysis of key informant interviews to extract impact mitigations and envisaged policy measures.

The positivist approach supported the research to achieve its objectives without the need to interfere with the study phenomena. In addition, it allowed the researchers to isolate the phenomena and ensured the repeatability of observations by manipulating variations within independent variables. The positivism philosophy was suitable for the study to allow for the generation of consistent and empirically established findings and to pursue an understanding and observation of a reality that consists of discrete occurrences by accepting that knowledge is derived from experience. The research denied any non-experienced theoretical notions through logical positivism, excluding value judgments for validity purposes. Consequently, through this philosophy, the study made the following assumptions (Kivunja & Kuyini, 2017):

- i. Experience alone informed scientific knowledge.
- ii. Direct application of methods of natural sciences to explain the social world.
- iii. The subject matter of the study consisted of studying a reality external to itself.
- iv. Expert normative statements had the status of knowledge.
- v. Pursuance of technically practical knowledge.

Figure 3: Research onion (Source: By the authors)

The study utilised a qualitative research design to answer the following research questions:

- i. What strategies can the government use to address construction tender price inflation?
- ii. How can we address construction tender price volatility in Zambia?

The study adopted qualitative research that followed an exploratory design to understand decisions and opportunities regarding construction tender price inflation. The technique allowed the study to focus the collection of data on a small number of respondents by asking questions through open-ended person-to-person interviews and observing the behaviour of respondents. This approach was essential in ensuring timely data collection and accuracy and gaining rich-preliminary insights.

S/N	Description	Age	Academic	Experience	Area of	Recommended
			qualification/Highest	(years of	Practice/Expertise	by
			level of education	practice)		
1	Purposive	47	Bachelor of	22	Civil engineering	Researcher
	Participant		Engineering (Civil and		consultant	
	1		Environmental			
			Engineering)			
2	Purposive	40	MSc Project	18	Contractor	Researcher
	Participant		Management			
	2					
3	Purposive	65	MSc (Construction	40	Quantity surveying	Researcher
	Participant		Management and		and Construction	
	3		Economics)		management	
4	Purposive	52	Bachelor of	27	Civil	Researcher
	Participant		Engineering (Civil and		Servant/Public	
	4		Environmental		Infrastructure-	
			Engineering)		Based Institution	
5	Purposive	42	MSc Business	17	Contractor	Researcher
	Participant		Management			
	5		5			

Table 5: Participants for research interviews

-						
			Bachelor of Engineering (Civil Engineering)			
6	Purposive Participant 6	39	 MEng Construction Management BSc Architecture 	15	Architectural consultant	Researcher
7	Purposive Participant 7	51	 MSc Project Management BSc Building Science 	25	Quantity surveying consultant	Researcher
8	Purposive Participant 8	63	 MSc Architecture PGDip. Project management and Building Law BSc Architecture 	30	Architectural consultant	Researcher
9	Purposive Participant 9	49	 MSc Logistics and supply chain management BSc Procurement management Dip. Chartered Institute of Purchasing and Supply 	22	Civil Servant/Public Infrastructure- Based Institution	Researcher
10	Snowballing Participant 1	50	 Ph.D. (Transportation Economics) MEng Civil (Pavement and Transportation) BEng Civil and Environmental Engineering 	24	Public project financing	Purposive Participant 1
11	Snowballing Participant 2	56	 MEng Civil (Pavement Design) BEng Civil and Environmental Engineering 	30	Civil engineering consultant	Snowballing Participant 1
12	Snowballing Participant 3	49	 MEng Construction Management BEng Civil and Environmental Engineering 	25	Civil engineering consultant	Snowballing Participant 2
13	Snowballing Participant 4	49	 MEng Project Management BEng Civil and Environmental Engineering 	22	Contractor	Snowballing Participant 3
14	Snowballing Participant 5	60	 MSc Construction Management BSc Quantity Surveying 	35	Quantity surveying consultant	Purposive Participant 7

4. FINDINGS

The study identifies four categories of pricing behaviours demonstrated by contractors during tendering, as shown in Table 6. These behaviours provide insights into construction tender-price inflation arising from industry and client-specific features. The pricing behaviours include resistance (PB1), reactive (PB2), anticipatory (PB3), and Consultant-

based (PB4). Consultant-based (PB4) pricing was the least practised behaviour, whereas reactive (PB2) was the most established among all behaviours.

Bid pricing	Code	Features	Conditions for behaviour
behaviour			
Resistant	PB1	 Ignoring nature and type of competition Overlooking challenges Contractor overconfidence 	 Single sourcing or direct bidding of contractors Pre-bidding qualifications Lack of competition Lack of experience Subcontracting
Reactive	PB2	 Strategies regarding inflationary problems Sensitivitystartegies to stakeholder interference Prediction strategies against exchange rate fluctuation Reaction strategies to external stimuli Time strategies against delayed or non-payments Strategies against client instability Expectation strategies for profit erosion Strategies for frontloading 	 The incompleteness of designs and tender documents Poor or lack of information Corruption Project variations Poor project management Government financed projects Profit maximisation
Anticipatory	PB3	 Prediction strategies against exchange rate fluctuation Client stability strategies Strategies to gain competitive advantage Innovation strategies 	 Donor funded projects Incentives
Consultant-based	PB4	 Stakeholder engagement strategies of competent pricing consultants Policy strategies Deliberate information-seeking systems Strategies for reflecting market rates 	 Capacity building Standardised specifications Availability of historical data Availability and uniformity of information

Table 6: Pricing behaviors

Source: Authors' compilation

Table 7 describes the characteristics of Zambia's construction tender pricing structure. Observation indicates that the pricing structure consists of five factors: client characteristics, aspects of local firms, foreign firms, the procurement process, and the project itself. The highest frequency or percentage designates the most significant description for each factor. For example, describing client characteristics of utmost consideration in the pricing structure is failing to make timely payments (CC1) and poor project management practices (CC2). Whereas other characteristic descriptions most relevant to pricing structure include:

- i. Characteristics of local firms Difficulties in accessing local financing (LF1)
- ii. Characteristics of foreign firms Receive foreign government assistance (FF1)
- iii. Characteristics of the procurement process Lack detection mechanism for the most economical price (PP1) and,
- iv. Characteristics of construction projects Heavily affected by macroeconomic factors (CP1)

Industry	Interview quote	Code	Frequency	Percentage	The local
characteristic	describing the nature			_	contractor
	of the industry				pricing approach
1. Client	Fails to make timely	CC1	12	18	increase markup
characteristics	payments				and frontload
	Embroiled with political	CC3	7	11	increase markup
	interference	000			mercuse murkup
	Poor project	CC9	19	18	increase markun
	management practices	002	12	10	mer case markup
		CCo	4	0	
	General preference for	0.08	4	6	artificially lower
	foreign firms	00.	_		price
	Low appetite for	CC4	7	11	increase markup
	infrastructure projects				
	Prone to contract	CC7	5	8	increase markup
	breaches				
	No incentives for local	CC6	6	9	increase markup
	contractors				
	Corruption prone	CC5	7	11	increase markup
	Lack of sector regulation	CC9	4	6	increase markup
	mechanism				1
	Public projects lack	CC10	2	3	increase markup
	economic benefits	0010	-	0	and frontload
	Total		66	100%	una nontioua
Q Characteristics of	Lack revent	LES	5	11	inonogo mankun
2. Characteristics of	Lack government	LF5	5	11	increase markup
local firms	support	LDo	2	10	. 1
	Heavily taxed	LF 2	6	13	increase markup
	Ill-equipped to compete	LF6	5	11	artificially lower
	effectively				price
	Poor development of cost	LF4	4	9	increase markup
	estimates				or artificially
					lower price
	Lack appropriate	LF3	6	13	artificially lower
	capacity				price
	Swamped by financial	LF4	6	13	increase markup
	pressure		-	-	and frontload
	The proliferation of	LF7	4	9	increase markup
	unqualified and non-	111 /	1	0	mereuse murkup
	technical players				
	Firms not growing to	IFQ	4	0	increase markun
	here a sempetitive	LIO	т	3	and frontload
	Difference competitive	LEI	-	1.7	
	Difficulties in accessing	LFI	7	15	increase markup
	local financing			<i></i>	and frontload
	Total	·	47	100%	
3. Characteristics of	Foreign government	FF3	7	19	artificially lower
foreign firms	owned				price
	Receive foreign	FF1	10	28	artificially lower
	government assistance				price
	Have huge capital	FF2	9	25	artificially lower
	outlays				price
	Have tax and material	FF5	4	11	artificially lower
	rebates from their home				price
	country				1
	Higher efficiency than	FF6	6	17	artificially lower
	local contractors		, , , , , , , , , , , , , , , , , , ,		price
	Total	L	36	100%	F-100
4 Characteristics of	Lack of proforantial	PPa	7	16	artificially lower
T. Characteristics Of	systems for targeting	112		10	ar unclarry lower
procurement	local firms				price
processes	Connot detect - 11	DDo	0	7	in an a s 1
	Cannot detect collusion	гг8	3	· ·	and frontload
1	1	1	1		anu nontioau

 Table 7: Description of the pricing structure of Zambia's construction industry

	Lack of detection mechanism for a most economical price	PP1	8	18	increase markup
	Not specialised in following construction principles	PP4	5	11	increase markup
	Procurement provisions do not suit the local market	PP3	7	16	increase markup and frontload
	Documents lack clarity and incomplete designs	PP5	5	11	increase markup
	Lengthy procurement processes	PP7	4	9	increase markup
	Not adequate for construction projects of complex technical nature	PP6	5	11	increase markup
	Total	44	100%		
5. Characteristics of construction	Heavily dependent on imports	CP8	4	7	increase markup
projects	Heavily affected by macroeconomic factors	CP1	11	19	increase markup
	Embroiled with external pricing pressure	CP7	5	9	increase markup
	High cost of inputs	CP2	8	14	increase markup
	High-risk allocation	CP3	7	12	increase markup and frontload
	Lack of adequate and practical price control mechanisms	CP5	6	11	increase markup
	No basis for pricing	CP9	3	5	Increase markup
	Reducing/reduced the number of projects	CP6	6	11	increase markup
	Stalled projects	CP4	7	12	increase markup
	Total		57	100%	

Further, the study utilises a theoretical approach and a hierarchical analytical process to create thematic strategies reflecting relative significance and respondents' feelings. Table 7 shows the identified turnaround strategies and their respective groupings developed through synthesis criteria driven by importance considerations. The study scored one (1) every time a respondent mentioned a strategy as part of the turnaround framework. Emergent patterns for turnaround strategies include cost estimating and financing, mitigating external and internal interferences, providing incentives, providing training, and encouraging innovations. Others include revising legislation, contextualising procurement functions, improving project management practices, predicting market forces, and guaranteeing sustainability. Given these factors, Table 8 of the study identifies a possible range of nine both existent and non-existent strategies for mitigating construction tender-price inflation, including planning management practices, stakeholder management practices, capacity management practices, capacity building practices, legal-framework modernisation, procurement management practices, project management practices, management of macroeconomic indicators and sustainable-construction management practices. The study identifies nine key turnaround strategies for addressing construction tender-price inflation, grouped into six categories to include:

- i. Planning management practices
- ii. Stakeholder management practices
- iii. Capacity management practices
- iv. Capacity building practices

- v. Legal-framework modernisation
- vi. Procurement management practices
- vii. Project management practices
- viii. Management of macroeconomic indicators
- ix. Sustainable-construction management practices

Table 8: Turnaround price management strategies

S/N	Participant ID	Pattern	Key Strategy	Sub-Strategy
1		Cost astimut	Dlanning	
	PS2	and financing	Management	Government to plan and design execution of projects.
	PS3	8	0	 Develop funding projections and ensure
	PS4			readily available funds
	SS2			Guarantee availability of project funding
	PS6			Control interest value related and time
	SS3 PS7			related costs
	SS4			Hire experienced consultants early enough in the project stages
	F 58 SS 5			 Develop well-informed cost estimates
	PS9			 Avoid the "text-book" approach when
				developing price indices
				Ensure timely payment to contractors
				Prepare project plans with robust designs and costings
				• Ensure that control systems like the e-
				GP and materials price index are realistic
				Develop models for rate build-up
				• Utilise various professionals to develop cost norms and value engineering
				Produce indices timely
2	PS1	Interference	Stakeholder	Government to depoliticise procurement
	PS4		Management	and construction process
	552 DS 5			Mitigate against corruption
	PS9 PS9			Stabilise the cost of materials, exchange
	PS9			rate, and inflation on the market
	100			Stop harmful interference in project management processes
				• Manage the type and extent of
				stakeholder involvement
3	PS1 SS1	Incentives	Capacity management	Develop preferential Treatment Methodologies
	SS2			Pay contractors for greater output
	SS3			Redress unfair competition practices
	PS8			Package contracts into small lots
	SS5			 Earmark-specific work is to be for local
				contractors only
				Review single-sourcing or direct-bidding rules
				• Introduce incentives in terms of taxes
				and statutory obligations
				• Redress entry barriers into the industry
				Ensure that the shareholding of construction firms contains qualified allied professionals
4	SS1	Training and	Capacity Building	Figure that people in the sector receive
·	SS2	innovation	capacity building	training
	PS6			 Support research and development
	SS3			 Develop an apprenticeship heard
	PS8			• Develop an apprentices in poard

				Utilise high-value projects to train personnel
5	SS1 PS7 PS9	Legislation	Legal-Framework Modernization	 Continuously review existing legislation Fully legislate the 20% subcontracting policy into law Timely produce regulations to guide the implementation of laws Review procurement policy
6	PS2 PS3 SS3 PS7 PS8 PS9	Procurement function	Procurement Management	 Develop better mechanisms for pre- qualification criteria Allow contractors to state the margin of profit on the project Make procurement law more responsive to local needs Subscribe procurement function to best and better practices Cancel projects whose contractors manage without referencing their bidding documents Ensure to award to the correct contractor Establish a department or supreme organ to address all government procurement- related functions, including complaints, final-reporting, professional well-being of procurement officers, and appointment of officers
7	PS3 SS2 PS6 SS3 PS7 PS8	Project practices	Project Management	 Develop project management skills Develop proper infrastructure governance mechanisms Develop principles that reflect the value of time Prevent deliberate government contract- breaches Develop standards for infrastructure project implementation Handle projects professionally Ensure that project key personnel are professionals Refer to the contents of the bidding document rather than concentrating on the general conditions of the contract alone
8	PS6 PS7	Market forces	Management of macroeconomic indicators	Regulate the market in terms of the cost of materialsStabilise inflation and exchange rate
9	PS5 PS7 SS4 PS8	Sustainability	Sustainable construction Management	 Develop standards for facilities management Ensure global competition does not hinder the growth of local firms Optimise bulk procurement of imported materials Setup adequate and cost regulated material's producing plants Redress incursion of no-professionals into the construction industry

5. DISCUSSION

The study agrees with Joukar et al. (2017) regarding integrating strategies to manage tender price volatility in the construction sector. They found that risk management and incorporating price adjustment clauses were essential to mitigating tender price variability. The study further concurs with Weidman (2010) that price volatility harms the fundamental economic assumptions of a construction contract. The research by Tembo et al. (2023a) highlights the harmful impacts of tender price variability and inflation on the construction sector. They argue that tender price volatility causes an unpredictable business environment, reduces the number of public projects, reduces value for money, and compromises the quality of work. Like Joukar et al. (2017), the findings show the complexities of establishing adequate controls for managing construction tender pricing. Correspondingly, construction models present corrective, preventive, and organisational measures for cost control while lacking a predictive approach that can effectively begin to ensure advanced tender price control. The study agrees with Azizi and Aboelmagd (2019) that most research fails to establish a balance that improves profitability while reducing prices. Nový et al. (2016) argue that a precise determination of construction tender price is essential for project success. However, the process is tedious and insists on developing correct tools for pricing based on a specific situation.

The study further argues that attaining institutional goals is achievable by mitigating construction tender price inflation. Target goals in this implementation schedule include improving cost estimating and project financing, managing stakeholder interference, developing local-firm incentives, developing training programs and encouraging innovation, reviewing legislation, contextualising procurement function, improving project practices, stabilising market forces, and adopting sustainable construction practices. On the other hand, it shows that public institutions in developing countries like Zambia have failed to weave together pragmatic strategies for addressing public construction tender price inflation. The model proposes strategies and a guideline to assist the government in providing the needed support and contractors to develop consistent and logical tender prices. The model intends to prioritise tender price inflation management by enhancing strategies related to government and local contractor aspects.

The study also observes an application gap for construction regarding using price control incentive mechanisms. The findings further agree with Zhang and Jian-li (2016), who highlight the fundamental benefits of price-control incentives by developing an incentiveregulation model. The study findings show that governments can maximise social gains from an infrastructure project by deriving accurate technical parameters and optimising procurement. Figure 4 proposes the conceptual Negotiated Construction Approach (NCA) for public projects, summarising and weaving together identified strategies. The phasing of the vital system begins with the most critical:

- i. Planning management (Engineering)- to be the first and most important strategy
- ii. Capacity management to be the second most important strategy
- iii. Stakeholder management to be the third most important strategy
- iv. Procurement management- to be grouped as the fourth most crucial strategy
- v. Project management to be the fifth most important strategy
- vi. Capacity building- to be grouped as the sixth most important strategy
- vii. Modernising legal framework to be the seventh most crucial strategy

A theoretical perspective of this study expands the current knowledge by providing valuable insights into the contractors' perception of the public construction sector, procurement methods, and client conditions. For instance, the study reveals that contractors increase price markups when there are difficulties in accessing local financing. It was also true when the client lacked a detection mechanism for the most economical price and was heavily affected by macroeconomic factors. Concerning the study area, the findings and

corresponding conceptualised model apply to the wider developing world, especially Africa, whose infrastructure development is heavily public sector oriented. The conceptual negotiated construction approach focuses on developing life-cycle prices and costings for best-value-for-money in the public sector. However, the model requires further validation to ascertain its applications in country-specific settings. The model covers the gap between the planning and execution of public construction projects by consolidating procurement risk assessment and contracting strategy development. The benefits of the contracting model include ensuring the best value for money, avoiding unjustifiable and unnecessary procurement, better allocation of public resources, enhanced communication, development of a live process with feedback mechanisms, and an understanding of tender price-associated risks.

More specifically, this research explores sector tender-pricing problems worthy of widespread public and political attention to influence sector-based policy. Therefore, this study focuses on identifying specific parameters for constructing a model for addressing the current and imminent critical tender-pricing issues in the Zambian public construction industry. Additionally, the research provides comprehensive possible future direction with pragmatic perspectives toward resolving interminable sector challenges. Tembo et al. (2023a) argue that tender price variableness is a pervasive problem, especially in public construction projects, since several internal and external factors are responsible for the trend. On that premise, this research further models a process that assists a government in predicting tender price patterns in advance. The model helps the public sector plan for the construction workload, improving the construction market's stability.

Figure 4: Conceptual negotiated construction approach for public projects (Wondimu et al., 2016; Walker and B. Lloyd-Walker, 2012; Finnie et al., 2018; Penn et al., 2017; Opoku and Ibrahim-Adam, 2018; Botha et al., 2020; Lefebvre and McAuley, 2019; Sanchez et al., 2015; Botha and Scheepbouwer, 2015)

(By the authors based on a literature review and research findings)

6. CONCLUSION

Contractors use price to mitigate procurement and client-related risks at the tendering stage. The trend requires developing and implementing procurement strategies that consider price control implications at the project tendering phase, leading to the development of contract delivery models that inadequately address the impact and potential value of pricing in construction projects. Therefore, strategies to overcome tender price volatility need a model that presents corrective, preventive, and organisational measures and a predictive approach to effectively ensure advanced tender price control. This study provides valuable knowledge and insights into the contractors' perception of the public construction sector, procurement methods, and client conditions. The study reveals that contractors increase price markups when there are difficulties in accessing local financing. It was also true when the client lacked a detection mechanism for the most economical price and was heavily affected by macroeconomic factors. The study further offers the conceptual negotiated construction approach that focuses on developing life-cycle costs and costings for the best value for money in the public sector. However, the model requires further validation to ascertain its applications in country-specific situations.

6.1 Practical implications

This study implies adding a novel contracting model to the ones shown in Table 3. The proposed contracting model specifies using a two-round procurement approach and establishing two classes of relationships between contractors and clients. The model also identifies the pre-conditions that contractors and clients must meet in the price negotiations and subcontracting stages. The model focuses on aligning the financial goals between the client and contractor through tender price negotiations. The model allows for the early elimination of adversarial relationships emanating from traditional contracting models. This contracting model is rooted in early price negotiation, thereby permitting exploring a concept of "preventative diplomacy" that is rarely applicable in construction.

REFERENCES

- Aigbavboa, C., Aghimien, D., Oke, A. and Mabasa, K., (2018). A preliminary study of critical factors impeding the growth of SMMES in the construction industry in Lusaka, Zambia. Washington DC, USA, IEOM Society International, pp. 100-107.
- Aje, I. O., Oladinrin, T. O. and Nwaole, A. N. C., (2016.) Factors influencing success rate of contractors in competitive bidding for construction works in South-East, Nigeria. Journal of Construction in Developing Countries, 21(1), 19–34.
- Akintoye, A. and Fitzgerald, E., (2000). A survey of current cost estimating practices in the UK. Construction Management and Economics, 18(2), 161-172.
- Al-Ajmi, H. F. and Makinde, E., (2018). Risk Management in Construction Projects. Journal of Advanced Management Science, 6(2), 113-116.
- Ali, M., (2018). Risk Factors That Leading to Cost and Time Overrun in Mega Construction Projects in Malaysia. ABC Research Alert, 6(3), 159-164.
- Alireza, J., Isabelina, N. and Craig, H., (2016). An AHP Selection Model for Ranking Potential Strategies for Managing Construction Cost Volatilities. Construction Research Congress, 616-626.
- Altemirova, A. S. and Burenina, I. V., (2021). Contract modeling of investment projects in the field of oil and gas construction. E3S Web of Conferences 266, 06001.
- Al-Zarrad, M. A., Moynihan, G. P. and Vereen, S., (2015). Guideline to Apply Hedging to Mitigate the Risk of Construction Materials Price Escalation. Vancouver, British Columbia, 5th International/11th Construction Specialty Conference.
- Ambe, I. M. and Badenhorst-Weiss, J. A., (2012). Procurement Challenges in the South African Public Sector. Journal of Transport and Supply Chain Management, 242-261.
- Amiti, M., Redding, S. J. and Weinstein, D., (2019). The Impact of the 2018 Trade War on U.S. Prices and Welfare, Massachusetts: National Bureau of Economic Research.

Anane, A. and Kwarteng, G., (2019). Prospects and Challenges of Procurement Performance Measurement in Selected Technical Universities in Ghana. Asian Journal of Economics, Business and Accounting, 13(2), 1-18.

Anon., n.d. s.l.: s.n.

- Ateto, D. M., Ondieki, N. S. and Okibo, W., (2013). The Effect of E-Procurement Practices on Effective Procurement in Public Hospitals: A Case of KISII Level 5 Hospital. American International Journal of Contemporary Research, 3(8), 103-111.
- Azizi, F. and Aboelmagd, Y. M., (2019). Integration between different construction bidding models to improve profitability and reduce prices. Alexandria Engineering Journal, Volume 58, pp. 151-162.
- Baccarini, D., (2012). Risk Pricing in Construction Tenders -How, Who, What. Australasian Journal of Construction Economics and Building, 7(2), 12-25.
- Bengtsson, M., (2016). Howtoplanandperformaqualitativestudyusingcontentanalysis. NursingPlusOpen2, 8–14.
- Blanco-Portela, N., R-Pertierra, L., Benayas, J. and Lozano, R., (2018). Sustainability leaders' perceptions on the drivers for and the barriers to the integration of sustainability in Latin American higher education institutions. Sustainability, 10(8).
- Botha, P., Van Der Walt, D. and Scheepbouwer, E., (2020). Factors That Determine When to Engage Pre-Construction Services. Proceedings of International Structural Engineering and Construction: Emerging Technologies and Sustainability Principles, 7(2).
- Braun, V. and Clarke, V., (2016). (Mis) conceptualising themes, thematic analysis, and other problems with Fugard and Potts' (2015) sample-size tool for thematic analysis. International Journal of Social Research Methodology, 19(6), 739–743.
- Brokbals, S., Wapelhorst, V. and Čadež, V., (2019). Calculation of risk costs in construction projects: Empirical analysis of construction risks applying the Monte Carlo method. Civil Engineering Design, Volume 1, 120–128.
- Buschle, C., Reiter, H. and Bethmann, A., (2021). The qualitative pretest interview for questionnaire development: outline of programme and practice. Quality and Quantity, 1-20.
- Carranza, J., Clark, R. and Houde, J., (2015). Price Controls and Market Structure: Evidence From Gasoline Retail Markets. The Journal of Industrial Economics, 63(1), 152-198.
- Cattell, D. W., Bowen, P. A. and Kaka, A. P., (2010). The risks of unbalanced bidding. Construction Management and Economics, 28(4), 333-344.
- Cattell, D. W., Bowen, P. and Kaka, A., (2007). Review of Unbalanced Bidding Models in Construction. Journal of Construction Engineering and Management. 133(8).
- Chalkidou, K., Claxton, K., Silverman, R. and Yadav, P., (2020). Value-based tiered pricing for universal health coverage:. Gates Open Research, 4(16).
- Chattopadhyay, S. and Mo, J. P. T., (2010). Modelling a Global EPCM (Engineering, Procurement and Construction Management) Enterprise. International Journal of Engineering Business Management, 2(1), 1-8.
- Cheelo, C. and Liebenthal, R., (2018). The role of the construction sector in influencing natural resource use, structural change, and industrial development in Zambia, Helsinki: s.n.
- Chilongo, S. and Mbetwa, S., (2017). An Investigation into the factors affecting project performance among contractors in Lusaka District of Zambia. The International Journal of Multi-Disciplinary Research, 1-38.
- Chiponde, D. B., Mutale, L. P., Ziko, J. M. and Jalo, N., (2017). Assessing The Feasibility of Using Building Information Modelling (BIM) To Improve Collaboration on Public Sector Projects in The Zambian Construction Industry. WIT Transactions on The Built Environment, 169, 191-199.
- Cruywagen, H., (2014). Towards the establishment of a relevant national tender price index for the South African building industry. Acta Structilia, 21(2), 22-43.
- Dada, J. O. and Jagboro, G. O., (2007). An evaluation of the impact of risk on project cost overrun in the Nigerian construction industry. Journal of Financial Management of Property and Construction, 12(1), 37 44.
- Delmonico, D. et al., (2018). Unveiling barriers to sustainable public procurement in emerging economies: Evidence from a leading sustainable supply chain initiative in Latin America. Resources, Conservation and Recycling, 134, 70–79.
- Durdyev, S. et al., (2018). A partial least squares structural equation modeling (PLS-SEM) of barriers to sustainable construction in Malaysia. Journal of Cleaner Production, 204, 564–572.

- Dziadosz, A., Tomczyk, A. and Kapliński, O., (2015). Financial risk estimation in construction contracts. Procedia Engineering 122, 120 128.
- Ekung, S., Siriwardena, M. and Adeniran, L., (2013). Optimised Selection and Use of Project Procurement Strategy in Nigeria: A Practical Case Study. Ethiopian Journal of Environmental Studies and Management No.6 2013, 6(6), 661-669.
- Farahane, M. J. and Heshmati, A., (2020). Trade and Economic Growth: Theories and Evidence from the Southern African Development Community, Bonn, Germany: IZA Institute of Labour Economics.
- Fentona, M., Armstrong, K. and Huebschc, J., (2016). Convertible Lump Sum EPS Contracting Model – How to get the plant you need now and still enjoy in 20 years?. Procedia Engineering, 138, 206– 219.
- Finnie, D., Ali, N. A. and Park, K., (2018). Enhancing off-site manufacturing through early contractor involvement (ECI) in New Zealand. Proceedings of the Institution of Civil Engineers – Management, Procurement and Law, 171(4), 176–185.
- Fourie, D. and Malan, C., (2020). Public Procurement in the South African Economy: Addressing the Systemic Issues. Sustainability, 12(8692), 1-23.
- Golini, R., Corti, B. and Landoni, P., (2017). More efficient project execution and evaluation with logical framework and project cycle management: evidence from international development projects. Impact Assessment and Project Appraisal, 35(2), 128-138.
- Gransberg, D. D. and Kelly, E., (2008). Quantifying Uncertainty of Construction Material Price Volatility Using Monte Carlo. Cost Engineering, 50(6).
- Gray, V. J., Helper, S. and Osborn, B., (2020). Value first, cost later: Total value contribution as a new approach to sourcing decisions. Journal of Operations Management, Volume 66, p. 735–750.
- Grega, M. and Nemec, J., 2015. Factors influencing final price of public procurement: Evidence from Slovakia. Procedia economics and finance 25, 543-551.
- Gudienė, N., Banaitis, A., Banaitienė, N. and Lopes, J., (2013). Development of a Conceptual Critical Success Factors Model for Construction Projects: a Case of Lithuania. Procedia Engineering 57, 392 – 397.
- Guest, G., Bunce, A. and Johnson, L., (2006). How many interviews are enough? An experiment with data saturation and variability. Field Methods, 8(1), 59–82.
- Hamza, S. B., Gerbi, A. and Ali, S. H., 2016. Factors Affecting Procurement Performance in the Case of Awassa Textile Share Company. Global Journal of Management and Business Research: (G) Interdisciplinary, 16(3).
- Jaśkowski, P. and Czarnigowska, A., (2019). Contractor's bid pricing strategy: a model with correlation among competitors' prices. Open Engineering, 9, 159–166.
- Joukar, A., (2016). Analysis and Management of the Price Volatility in the Construction Industry, Louisiana: s.n.
- Kabanda, S., Pisto, N. and Kapepo, M., (2019). The Role of Institutional Pressures in the Adoption of e-Procurement in Public Institutions in Developing Countries: The Case of Lesotho. The African Journal of Information Systems, 11(3), pp. 232-248.
- Kedir, A. and Ganfure, T., (2020). Factors Affecting Effectiveness of Centralised Public Procurement System: Evidence from Selected Ethiopian Higher Public Education Institutions. International Journal of Commerce and Finance, 6(2), 92-103.
- Kiama, G. P., (2014). Factors Affecting Implementation of Public Procurement Act in SACCO Societies in Kenya. International Journal of Academic Research in Business and Social Sciences, 4(2), 169-194.
- Knowles, R. I., (1997). Tendering for Public Construction and Related Consultancy Services, Victoria: Office of Building and Infrastructure Development.
- Laryea, S., (2018). Procurement strategy and outcomes of a new universities project in South Africa. Engineering, Construction and Architectural Management.
- Laryea, S. and Hughes, W., (2008). How contractors price risk in bids: theory and practice. Construction Management and Economics, 26, 911–924.
- Lawrence, D. R., (2003). A Machine-Learning Approach to Optimal Bid Pricing. In: O. R. S. I. Series, ed. Computational Modeling and Problem Solving in the Networked World. Massachusetts: Springer, Boston, MA, 97-118.
- Lefebvre, F. and McAuley, B., (2019). An investigation into current procurement strategies that promote collaboration through early contractor involvement with regards to their suitability for

Irish public work projects. Dublin, School of Multidisciplinary Technologies at ARROW@TU Dublin, pp. 209-221.

- Li Suyuan, W. and Khurshid, A., (2015). The effect of interest rate on investment; Empirical evidence of Jiangsu Province, China. Journal of International Studies, 8(1), 81-90.
- Lune, H. and Berg, B. L., (2017). Qualitative Research Methods for the Social Sciences. Ninth Edition ed. Harlow, England : Person.
- Majumdar, S. K., (2003). Price Controls as Incentive Mechanisms. Economic and Political Weekly, 38(34), 3551-3553.
- Maleki, M., Karimi, M., Reyan, H. and Cruz-Machado, V., (2020). E-Procurement Platform Implementation Feasibility Study and Challenges: A Practical Approach in Iran. Singapore, Springer, 843-855.
- Martínez-Mesa, J. et al., (2016). Sampling: how to select participants in my research study?. Anais brasileiros de dermatologia, 91(3), 326-330.
- Modisakeng, C., Matlala, M., Godman, B. and Meyer, J. C., (2020). Medicine shortages and challenges with the procurement process among public sector hospitals in South Africa; findings and implications. BMC Health Services Research, 20(234), 1-10.
- Mohamed, B. M., (2016). Institutional Analysis of Systemic Challenges on Public Procurement: The Case of Tanzania. International Journal of Business and Social Science, 7(4), 160-173.
- Molenaar, K., Anderson, S. and Schexnayder, C., (2011). AASHTO practical guide to estimating. Washington, DC, Technical Rep..
- Morina, F. et al., (2020). The Effect of Exchange Rate Volatility on Economic Growth: Case of the CEE Countries. Journal of Risk Financial Management, 3(17), 1-13.
- Munyimi, T. F., (2019). The role of procurement quality controls in procurement performance in the energy sector in Zimbabwe. Cogent Engineering, 6, 1-18.
- Musa, J. S., Ejura, B. S. and Nwaorgu, I. A., (2014). The Public Procurement Reforms in Nigeria: Implementation and Compliance Challenges. Journal of Asian Business Strategy, 4(11), 149-162.
- Naji, H. I. and Ali, R. H., (2017). Risk Response Selection in Construction Projects. Civil Engineering Journal, 3(2), pp. 1208-1221.
- Ngunjiri, E. M., (2019). Evaluation of factors affecting implementation of green public procurement governments in laikipia county government, Kenya. International Journal of Professional Business Review, 4(1), 128–137.
- Nikpour, B., Senouci, A. and Eldin, N., (2017). Detection Tool for Unbalanced Bids. Open Journal of Civil Engineering, 7, 409-422.
- Nketekete, M., Emuze, F. and Smallwood, J., (2016). Risk management in public sector construction projects: Case studies in Lesotho. Acta Structilia, 23(2), 1-24.
- Nový, M., Nováková, J. and Bartoš, M., (2016). Pricing in Construction Project Management Performed by the Self-employed. Procedia Engineering, 161, 759 – 764.
- Oberholzer, M. and Ziemerink, J., (2004). Cost behaviour classification and cost behaviour structures of manufacturing companies. Meditari Accountancy Research, 12(1), 179–193.
- Oghenekevwe, O., Olusola, O. and Chukwudi, U. S., (2014). An Assessment of The Impact of Inflation on Construction Material Prices in Nigeria. PM World Journal, 3(4).
- Olabisi, O., (2022). Too Expensive to Build: Lagos, Lusaka, 5 others with the Highest Cost of Commercial Building Construction in Africa. [Online] Available at: https://businesselitesafrica.com/2022/11/16/too-expensive-to-build-lagos-lusaka-5-others-with-the-highest-cost-of-commercial-building-construction-in-africa/ [Accessed 14 April 2023].
- Olawale, Y. and Sun, M., (2010). Cost and time control of construction projects: Inhibiting factors and mitigating measures in practice. Construction Management and Economics, 28(5), 509 526.
- Onyango, C. J., (2014). Effects of Procurement Planning on Institutional Performance: A Case Study of Mombasa Law Court. International Journal of Science and Research (IJSR), 3(11), 446-455.
- Opoku, A. and Ibrahim-Adam, R., (2018). Early Contractor Involvement in Government Construction Projects in Ghana. Belfast, UK, Association of Researchers in Construction Management, 199-208.
- Paek, J. H. and Lee, Y. W., (1993). Pricing Construction Risk: Fuzzy Set Application. Journal of Construction Engineering and Management, 19(4), 743-756.
- Penn, C., Farnes, K. L. and Rahmani, F., (2017). Early Contractor Involvement (ECI) in Event Planning and Management. EPiC Series in Education Science, 1, 54-61.

- Pooe, D. R. I., Mafini, C. and Makhubele, D. T., (2015). Investigating Municipal Procurement Challenges in South Africa: A Qualitative Study. International Business and Economics Research Journal, 14(1), 67-78.
- Rais, S. L. A., Bidin, Z. A., Bohari, A. A. M. and Saferi, M. M., (2018). The possible chnallenges of green procurement implementation. s.l., s.n., 1-7.
- Ramanathan, C., Narayanan, S. P. and Idrus, A. B., (2012). Construction delays causing risk on time and cost - a critical review. Australasian Journal of Construction Economics and Building, 2(1), 37-57.
- Raventós, P. and Zolezzi, S., (2015). Electronic tendering of pharmaceuticals and medical devices in Chile. Journal of Business Research, 68(12), 2569–2578.
- Riziki, A. A., 2018. The Challenges of e-Procurement Implementation in Infrastructure Projects. Journal of Public Administration Studies, 3, 17-25.
- Sanchez, A. X., Lehtiranta, L. M. and Hampson, K. D., (2015). Use of contract models to improve environmental outcomes in transport infrastructure construction. Journal of Environmental Planning and Management, 58(11), 1923-1943.
- Seeletse, S. and Ladzani, W., (2012). Project cost estimation techniques used by most emerging building contractors of South Africa. Acta Structilia, 19(1), 106-125.
- Sibanyama, G., Muya, M. and Kaliba, C., (2012). An Overview of Construction Claims: A Case Study of the Zambian Construction Industry. International Journal of Construction Management, 2(1), pp. 65-81.
- Silwimba, S. and Mwiya, B., (2017). An Investigation of the Effects of Procurement Methods on Project Delivery in the Zambian Road Sector. Global Journals Inc., 17(3), pp. 10-15.
- Skitmore, M. and Cattell, D., (2013). On being balanced in an unbalanced world. Journal of the Operational Research Society, 64, 138–146.
- Sreejesh, S., Mohapatra, S. and Anusree, M. R., (2014). Business Research Design: Exploratory, Descriptive and Causal Designs. In: Business Research Methods. s.l.:Springer.
- Sukasuka, G. N. and Manase, D., (2016). Best Practice Guide to Procurement Challenges of Public-Private Partnerships in Infrastructure Development in Malawi. Journal of Construction Project Management and Innovation, 6, 1503-1518.
- Su, L. et al., 2020. Multi-criteria decision making for identification of unbalanced bidding. Journal of Civil Engineering and Management, 26(1), p. 43–52.
- Tatum, C. B., 1979. Evaluating PCM Firm Potential and Performance. Journal of the Construction Division, 105(3).
- Tembo, M., Mwanaumo, E. M. and Kahanji, C., (2023a). Impact of Tender Price Variability on Economic Sustainability of Construction Sector in Developing Countries. International Journal of Development and Economic Sustainability, 11(1), pp. 50-80.
- Tembo, M., Mwanaumo, E. M. and Kahanji, C., (2023b). Impact of Globalisation on Sustainable Implementation in the Construction Industry: Dynamics of Construction Tender price Volatility. International Journal of Developing and Emerging Economies, 11(1), 19-53.
- Tembo-Silungwe, C. K. and Khatleli, N., (2017). Deciphering priority areas for improving project risk management through critical analysis of pertinent risks in the Zambian construction Industry. Acta Structilia, 24(2), 1-43.
- Toni, D. D., Milan, G. S., Saciloto, E. B. and Larentis, F., (2017). Pricing strategies and levels and their impact on corporate profitability. Revista de Administração, 52, 120–133.
- Towner, M. and Baccarini, D., (2012). Risk Pricing in Construction Tenders -How, Who, What. Australasian Journal of Construction Economics and Building, 8.
- Tsuma, V. I. and Kanda, M., (2017). Factors Affecting the Adoption of e-Procurement Systems among International Non-Governmental Organisations in Kenya. International Journal of Academic Research in Accounting, Finance and Management Sciences, 7(2), 164–176.
- Uyarra, E. and Flanagan, K., (2009). Understanding the innovation, Manchester: Manchester Business School Working Paper, No. 574, The University of Manchester.
- Veludo-de-Oliveira, T. M., Ikeda, A. A. and Cortez Campomar, M. C., (2006). Laddering in the practice of marketing research: barriers and solutions. Qualitative Market Research: An International Journal, 9(3), 297-306.
- Walker, D. H. T. and B., L.-W., (2012). Understanding Early Contractor Involvement (ECI) procurement forms. Edinburgh, UK, Association of Researchers in Construction Management, 877-887.

- Weidman, J. E., (2010). Best Practices for Dealing with Price Volatility in Utah Commercial, Uttah: BYU ScholarsArchive.
- Wondimua, P. et al., (2016). Success factors for early contractor involvement (ECI) in public infrastructure projects. Energy Procedia 96, 845 854.
- Xu, Q. -Y., (2014). The Cost of the Construction Project Risk Management and Optimise the Allocation of Resources. s.l., The authors Published by Atlantis Press.
- Ye, K. M. and Abdul-Rahman, H., (2010). Risk of late payment in the Malaysian construction industry. World Academy of Science, Engineering and Technology, 65.
- Yismalet, A. G. and Patel, D., (2018). A Critical Literature Review on Improving Project Cost Management Practice and Profitability of Domestic Contractors. International Journal of Engineering Technologies and Management Research, 5(1), 51-58.
- Yu, W. -D., Kwo-Wuu Wang, K. -W. and Wang, M.-T., (2013). Pricing Strategy for Best Value Tender. Journal of Construction Engineering and Management, 139(6), 675-684.
- Zhang, H. and Jian-li, J., (2016). The Government Incentive Regulation Model and Pricing Mechanism in Power Transmission and Distribution Market. Discrete Dynamics in Nature and Society, 1-9.
- Zhang, S., Zhang, L. and Yuan, G., (2006). Risk allocation in construction projects: A Comparison of China's Standard Form of Construction Contract and FIDIC Conditions of Contract for Construction. Surveyors Times, 35-40.
- Zhong, J., (2011). Study on Cost Management under EPC General Contracting Model. Advanced Materials Research, 181-182, 49-53.
- Zulu, S. L., Zulu, E., Chabala, M. and Chunda, N., (2022). Drivers and barriers to sustainability practices in the Zambian Construction Industry. International Journal of Construction Management, 1-11.
- Zulu, S. and Muleya, F., (2018). A student perspective of ethics in the Zambian construction industry. Journal of Engineering, Design and Technology