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Abstract: Agriculture is one of the foremost climate-responsive businesses, with open-air 
production systems sensitive to temperature and rainfall. This paper reviews recent literature 
and assesses the impact of climate change on the accessibility of water resources for irrigation. 
The paper critically reviews recent research findings on climate change effect on the potential 
of surface water and groundwater for irrigation in Ethiopia's south rift valley (Abaya-Chamo) 
Sub-basin. Surface water in the south rift valley Ethiopia sub-basin, including the Abaya and 
Chamo lakes, is estimated to be just over 5,718 million m3yr-1. Finally, the implications for 
future study and development are emphasized. The effect of climate change (rainfall and 
temperature) on the water in the Abaya-Chamo lakes feeder Rivers is different for the near 
future (2021–2050) and extreme future (2071–2100) time using the RCP 8.5 scenario. Overall, 
findings show that the availability of water resources for irrigation purposes in the south rift 
valley Ethiopia sub-basin will be more vulnerable to changes in rainfall and temperature. In 
conclusion, Stream flow future projection (%) for each feeder river Bilate, Kulfo, Gidabo, and 
Hare are -9.07, -11.24, 3.89, 4.135, − 0.95, − 1.5, 13.4, and 15.4% respectively 

Keywords: Abaya-Chamo, Climate change, Lake, River, Water Resource, irrigation 
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1.0 Introduction 
Agriculture is one of the foremost climate-sensitive businesses, with open-air 
production systems that are amazingly delicate to temperature and rainfall. Climate 
change significantly affects crop yield by bringing down crop water use due to 
expanded evapotranspiration and changing precipitation patterns.  

The influence of Climate change on water supplies is a hot point of investigation 
worldwide (Repel et al., 2007). Expanded warmth and decreased stream flow during 
the crop flowering season have a critical effect on crop yield. Expanding temperature 
may decrease the rural developing season and increment the number of water system 
days required. 

Food uncertainty has resulted from climate inconstancy, especially precipitation 
changeability and going with dry seasons in Ethiopia (Rosell, 2011). As a result, 
irrigated farming is a critical technique for accomplishing food security by expanding 
rural generation, forcing cropping designs (number of crops per year), and utilising 
accessible irrigation water.  

According to Tudorancea, and Taylor (2002), among twelve Ethiopian river basins 
Rift Valley basin is one of the basins with a chain of permanent lakes and tributary 
streams. According to the creator Wondwosen et al., (2015), the Ethiopian Rift Valley 
has interconnected lakes, tributary rivers, and groundwater. Abaya-chamo catchment 
is one of the rift valley basins called southern Rift Valley. It is found in southern 
Ethiopia.  

The effect of climate change on stream flow and river accessibility for crop yield 
within the catchment of Abaya-chamo (Ethiopian Southern Rift Valley) was 
examined for its significance in expanding irrigation agricultural production yields 
within the area.  

This paper aims to bring together information on the joins between climate change 
and the availability of water resources for irrigation within the southern Ethiopian Rift 
Valley basin based on academic literature. 

 2.0 Water on the surface of Abaya – Chamo sub-basin  

According to Ayele et al., 2019 Southern Ethiopian Rift Valley catchment is a portion 
of the rift valley basin in Ethiopia, which is found within southern Ethiopia. Its' 
latitude ranges from 5°51.5'N to 8°8'N, and its longitude ranges from 37°16.3'E to 
38°39.3'E, with an elevation run of 4200 m to 1108 m.  

The yearly total precipitation ranges of the Ethiopian Southern Rift Valley sub-
catchment is from 400mm-2300 mm. The Southern Ethiopian Rift Valley sub-basins 
water resources are divided into Chamo and Abaya lakes and their feeder streams. 
Southern Ethiopian Rift Valley lakes' total surface water resource is 5,718 million 
m3yr-1. This can be assessed utilizing the river's average flow into a system of lake 
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underneath "current" situations, counting agriculture and household water sources. 
(Mulugeta and colleagues, 2015; MoWE, 2012; Ermias Mekonnen, 2019). 

 

Figure 1. Southern Ethiopian Rift Valley  Sub-Basin. (Source: (Ayele et al., 2019) 

surface water of Southern Ethiopian Rift Valley sub-basin a tributary streams is 
additionally evaluated as the Min. stream flow discharge 3.5, 1.5, 2.9, 1.7, 1.8, and 
0.85m3s-1 and Max. Stream flow discharge 8.5, 3.9, 43.9, 9.1, 14, and 6.2 m3s-1 Kulfo, 
Rabbit, Bilate, Gidabo, Gelena, and Kola separately (MoWR, 2008). 

3.0 Climate Change on Southern Ethiopian Rift Valley Sub-basin 
water  
Southern Ethiopian Rift Valley is generally composed of the two lakes and several 
rivers and streams that flow into them. Ethiopian precipitation within the Southern 
Ethiopian Rift Valley sub-basin described is lower average in most of the region, 
which is shown by direct to serious Dry spells periods. Dry spells happened nine times 
between 1988 and 2015, resulting in failure and serious food uncertainty. The 
precipitation data was measurably downscaled utilizing the NCEP-NCAR, and 
CanESM2 demonstrated predictions.  

The extents of month-to-month measured and downscaled precipitation were 
exceptionally comparable. According to Beyene et al., (2021), the RCP2.6, RCP4.5, 
and RCP8.5 forthcoming scenarios were calculated to survey future dry spell designs. 
For a long time 2030; 2050; and 2080; the average yearly rainfall situation dropped 
by 0.2-13.7%; 0.5-6.4%; and 0.1-1.3% for the time of 2030; 2050; and 2080 
individually.  
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3.1 Climate Swap on Chamo lake water availability 

Chamo-lake is a portion of the most Ethiopian Southern Rift Valley category, which 
has 1108 m elevation. 

Table1. Lake Chamo water by volume 

Name   
 

 Area (km2)  Maxi. Depth (m)  mean Depth (m) Total Water Resource (Mm3 per year) 

Chamo  18,575 551 14.2 6 506 
 

Source: Mulugeta et al., 2015; MoWE, 2012; and Ermias Mekonnen , 2019 

According to Elias Gebeyehu (2017), the predicted stream flow within the 2030s and 
2090s utilizing the RCM A1B scenario shows a decrease in runoff within the 
watersheds, specifically related to a diminish in rainfall and an increment in potential 
evapo-transpiration. Within the 2030s and 2090s, the mean yearly inflow is down 
16.3% and 42.8%, individually, compared to the base period. In this scenario, 
evaporation over the lake is upgraded by 0.73 and 2.6 per cent within the 2030s and 
2090s separately. Ungagged streams account for 32.1% of Lake Chamo's input, 
whereas gaged streams account for 67.9%. 

Table 2. Lake Chamo water balance components and their value due to climate change 
(mmyr-1).  

component of water-balance  1996 to 2004 2030 2090 

Areal rainfall of Lake  897.0 869.0 808.0 

inflow River (Gauged)  161.0 153.0 98.0 

river inflow (Ungauged) 96.0 62.0 49.0 

evaporation from Lake  1217.0 1226.0 1249.0 

outflow from Lake  Zero zero Zero 

Source: Elias Gebeyehu , (2017) 

3.2 Climate Variation influence on Lake Abaya water resource 

Lake Abaya incorporates a surface estimate of 1160km2 and is found at an elevation 
of 1268 meters. Bilate Stream, which joins from the north and other streams from the 
south-east and South-west Mountains, nourishes the lake. The streams recharge to the 
Abaya Lake is 383,119,189 and 60 million cm for Bilate, Gelana, Gidabo and Hare, 
separately.  
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Table 3. Lake Abaya Water Resources 

Name   

 

 Area 

(km2)  

Maxi. Depth 

(m)  

Mean 

Depth 

(m) 

Total Water 

Resource (Mm3yr-1) 

Abaya  1,162 24.5 7.1 2512 

Source: Mulugeta et al., 2015; MoWE, 2012; and Ermias Mekonnen , 2019 

 

4.0 Climate Change on Abaya-Chamo catchment Rivers water resource 

4.1 Climate Change on Bilate River Water resource 

According to Hailu et al. (2021), using RCP.4.5 and RCP.8.5 scenarios, climate 
change in 2021-2050 and 2051-2080 time was estimated by utilizing, and gathering 
means regional climate models as appeared in Table 4. 

Table 4. climate change scenarios on  (2021-2050) and (2051 -2080) 

           
                               

 

According to Behailu et al. (2018) influence of climate changes on surface water was 
studied in Bilate catchment within the Ethiopian Southern Rift Valley watershed in 
Ethiopia. Using RCP.2.6 and RCP.8.5 model scenarios, the yield uncovers that 
annually stream decreases of up to 12.1 and 16.21% are possible. In any case, real 
abuse of these resources within the basin is very low, with domestic, animal, and 
minor agricultural operations accounting for 51.49 MCM (9.03%). Four scenarios 
were made in the basin up to 2035, each based on a particular set of assumptions. For 
the reference, in scenarios one, two, and three, total annual utilization is expected to 
be around 14.53, 20.43, 37.47, and 44.46%, respectively.  

 

Table 5. Average yearly rainfall change of Bilate River up to 2035s 

Hydrological parameter 
 

Values' Simulated 
(mm) 

      Weighted average 
 

        % Rainfall 

Calibration validation 

Evapotranspiration 772.50 769.60 7712.0 77.30 
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Total AQ recharge 123.70 116.50 120.20 12.0 
Percolation 123.20 117.10 120.10 12.0 
Shallow AQ recharges 105.20  

 
102.90 10.30 

Total water yield 93.80  
 

101.40 10.10 

Surface runoff 54.70 70.70 62.70 6.20 
Base flow 40.0 40.0 40.0 4.0 
Deep AQ recharges 6.20 5.50 6.0 0.60 
Transmission losses 0.90 0.90 0.90 0.160 
Groundwater evap. 1.50 0.70 0.710 0.070 

 

AQ = Available discharge  

According to Yoseph ArbaOrke and Ming-Hsu Li (2022), the Bilate Stream is the 
central water source for the encompassing populations' household and agriculture 
purposes. As a result, unpredictable precipitation and water shortage could critically 
affect agricultural productivity throughout crop developing seasons. Climate 
estimates in the future close 2021-2050 and distant future 2071-2100 duration were 
produced from Coordinated Regional Downscaling Try (CORDEX) Africa under two 
RCP,4.5, and RCP,8.5. With CORDEX-Africa data, the SWAT model was utilised to 
assess watershed hydrology changes.  

To determine the characteristics of meteorological, hydrological, and agricultural dry 
spells, Standardized Precipitation Record (SPI), Stream flow Dry drought Record 
(SDI), and Observation Dry season File (RDI) were calculated. By the conclusion of 
the twenty-first century, evapotranspiration will have expanded up to 16.8% due to a 
huge rise in temperature. The yearly average precipitation is anticipated to decrease 
by 38.3% within the distant future time under RCP.8.5 model scenario, coming about 
in a 37.5% diminishment in stream flow. Diminished diurnal temperature run 
projections may advance crop development, but they may show expanded warm 
stress. The yearly mean stream flow within the Bilate watersheds declined by 3.64 
mmyr-1.  

According to Getahun et al., a collaborative and combined of 20 Model Inter 
evaluation Forecast Stage5 (CMIP5), and common models circulation (GCMs) were 
utilized to produce 24 future climatic scenarios for the watershed in 2021, utilizing 
two figurative strength pathways and 6 GCM structure. The simulation of stream flow 
within the catchment and the soil and water assessment tool (SWAT) software were 
selected. Table 6. Show that the impact of climate varies on river flow in 2080. 
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Table 6. Climate change scenarios in the 2080s. 

 
Parameter        Description Process of model  range of 

Variation 
Fitted 
value 

Rank 

CN2 SCS runoff curve number for moisture 
condition II 

Runofl -25 to +25  1 

ESC0 Soil evaporator compensation factor Evaporation 0 to 1 1* 2 
Sd Awe Availed soil water capacity Soil water -25 to +25 15a 3 
Gwqmn The threshold water level in the shallow 

aquifer for return flow to occur (mm) 
Groundwater 0 to 1000 258* 4 

Ch K2 Effective hydraulic conductivity in main 
channel alluvium (mm h 1) 

Channel low 0 to 150 31a 5 

Alpha Bf Base how the recession is constant (days) Groundwater 0 to 1 0.09 6 
Ch N2 Manning's roughness coefficient for the 

main channel 
Channel flow 0 to 1 0.43" 7 

Surlag Surface runoff Iag coefficient Runoff 0 to 12 9.64• 8 
Gw Delay Groundwater delay t me Groundwater 0 to 10 6.45a 9 
Rchrge Dp Aquifer percolation coefficient Ground-water 0-1 0.49a 

a=default values (absolute change); b= default values multiplied by one (relative 
change); c=defauk values are increased by this value (absolute change). 

4.2 Climate Change on Kulfo River Water resource 

According to Nega et al.,(2018), evaluating the potential effect of climate change 
action on river water resources is basic for future water resource plans and 
management. The future scenario for 2050 and 2080 river flow size within Kulfo 
watershed was explored utilizing a hypothetical climate vary scenario based on the 
Climate change of intergovernmental panel on (IPCC) fifth evaluation report predict 
the effect of climate variation on River flow.  

The capacity affect of climate change on river flow was evaluated takes after: 
expanding temperature by 0.5°C from 2.5-3°C and 4.5-5°C, the average yearly flow 
on stream of the Kulfo River is anticipated within the 2050 to increase by 2.86% and 
2080 by 2.99%; whereas from -10 to -20% by 10% drop rainwater come about in a 
stream diminishment by four per cent. The discharge of the Kulfo River has been 
observed to extend as precipitation increments and diminish when temperature 
increments within the twenty-first century. In general, the findings imply that the flow 
of streams within the Kulfo catchment will be more sensitive to precipitation changes 
than temperature changes. 

4.3 Climate Change on Hare River Water resource 

According to Biniyam Yisehak Menna (2017), downscaled climatic data (RCP.4.5 
and RCP.8.5 scenarios) were utilized for the future period assessment. For RCP4.5 
scenario, precipitation is anticipated to extend by 6.40, 2.56, and 16.30 per cent on a 
month-to-month premise within 2020, 2050, and 2080, respectively. 
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RCP8.5 scenario repeated the average yearly increment with 8.56, 8.08, and 15.85% 
within 2020, 2050, and 2080, respectively. The maxi. and min. Temperature 
projections for both RCP scenarios are predicted to rise with time. The month-to-
month mean percentage changes in climate factors from the baseline period were 
utilized to model future stream flow estimates,. For RCP.4.5 scenario, the month-to-
month mean stream flow is expected to extend by 12.2%, 8.0%, and 13.9%n from the 
standard period within 2020, 2050, and 2080, respectively, while for the RCP.8.5 
scenario, it is projected to extend by 7.3, 13.4, and 15.4% within 2020, 2040, and 
2080, respectively. Only future climate change conceivable outcomes were examined 
within the model runs, with all spatial data held constant. 

Biniyam Y. and Abdella K. (2017) utilized bias-balanced RCPs climate data to assess 
the effects of climate variation on precipitation and flood rate within the Hare 
catchment. Future precipitation size changes in Peak flow amplitude and frequency 
are clearly governed Within the 2080s. 

 

Table 7: Climate change effect on Rainfall and flood sizes at 2020, 2050 and 2080 
periods. 

 
period of Return  

a. flood magnitude Change (% ) 

2  
 

10 25 50 100 

 
 

Period 

2020 -3.58 -13 08 -20.94 -25.12 -29.63 -32.84 

2050 10.94 24 19.26 24.66 19.35 16.28 

2080 18.63 22.14 14.44 17.76 12.41 9.72 

 

4.4 Climate Change on Gidabo River Water resource 

According to Beyene et al. (2021), the study determines the potential implications of 
climate swap on a hydro-climate pattern of variables at little sizes within the 
catchment of Gidabo. The MK drift of min. and max. temperature, as well as potential 
evapotranspiration (PET), appears that they are all growing, while precipitation (RF) 

 
 
period of Return  

b. Rainfall magnitude Change  (%) 

Two Five Ten Twenty five Fifty One Hundred 
 
 
Period 

2020 -7.340 -16.750 -22.830 -30 010 -34.860 -39.340 
2050 9.960 13.90 14.20 12.970 11.450 9.480 

2080 27.150 25.840 22.450 16.810 12.210 7.460 
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and stream flow are both diminishing irrelevantly additionally , the deviation to 
reference period of RF negative(58.7, 34.5, and 62.2percent); Temperature(To) 
positive(1.15, 2.2and 4.2percent); PET positive(55.5, 73 and 99.9percent); and stream 
flow negative(2.63, 2.17 and 3.63percent) in Meso river; negative( 0.27, 0.20 and 
0.40percent) in Kolla river; positive (0.40, 0.13 and 0.53percent) in Apusto river; and 
negative (0.13, 0.10 and 0.03percent) in Bedessa river beneath RCP.2.6, RCP.4.5 and 
RCP.8.5 respectively. Hence, diminish in seasonal rainfall and the rise in To result in 
expanded potential evapotranspiration, which essentially impacts stream flow. 

 

Table 8. climate change effect on future RF, PET, and temperature. 

Period Rainfall Tmin. Tmax      PET  

2020 2050 2080 2020      2050   2080 202
0 

205
0  

20
80 

2020 2050      2080 

RC
P 
2.6 

Annual -29.2 - 5.7 -82.1 1.1 0.9 1.3 0.9 0.9 ] .4 40.6 62.6 48.5 
Spring -0.7   4 -10.5 1 1.1 1.2 1 0.9 1.3 15.4 19.2 16.5 
Winter -77.5 40.8 -97.7 1.1 0.9 1.4 1.2 1 1.6 17. 4 20.5 14.2 
Summer 11.9 -7.6 -44.7 1.1    1 1.4  1 1 1.5 7. 4 16.6 12 
Autumn 4b.2 38.6 30.8 1 0.9 1 .2 0.5 0.7 1.1 0.7 6.6 5.7 

RC
P 
4.5 

Annual -91 - 64.7 -86.3 1.4 1.9 2.8 1.3 1.8 2.5 41.4 83.4 94.5 
Spring 0 7.1 -3.4 1. 3 1.9 2.9 1 .4 1 .8 2.6 11.4 21.1 23.4 
Winter -82.7 -88.3     -

76.7 
   1 
.4 

  2 2.8 1.5 2.1 2.9 13.7 26.7 30.6 

Summer -30..8 -20.3 -4 
3.7 

1.5 1.9 2.7 1.5 2 2.8 10.5 21.4 24.1 

Autumn 22. 5 56.9 67.1 1.4 1.8 2.8 0.9 1.5 2 5.76 14.2 16.4 
RC
P  
8.5 

Annual -56 - 33.1 -13.1 1.2 2.3 4. 1 1.1 2. 1 4.9 65.7 110 124.7 
Spring -5.8 0.7 4.9 1. 4 2.3 4. 1 1.3 2 4.4 16.3 28.7 47.2 
Winter     35.3 -64.2 -

103.
3 

1.2 2.3 4 1.1 2.4 4.3 21.3 37.9 57.2 

Summer 40.9 21.9 -53.8 1.2 2.2 3.9 1.2  2.2 4. 
1 

17.4 30.4 55 

Autumn 14.5 53.7 79 1.1 2.2 3.6 0.8 1.8 3.6 10.8 19 35.3 

 

Amba Shalishe Shanka (2017) talks about the impressions of climate swap on runoff 
within the Gidabo River watershed. Daily rainfall and temperature within the river 
basin were downscaled utilizing the Statistical Downscaling Model version 5.1. To 
depict future climate change, HadCM.3 Ocean coupled atmosphere model output for 
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A.2a and B.2a scenarios determined. Climate swap scenarios for rainfall and To were 
developed for three future times: 2030, 2050, and 2080. 

For both the A.2a and B.2a model scenarios, climate change action impact may result 
in increments in average monthly runoff within 2020, 2050, and 2080. The total 
average yearly runoff within the Gidabo stream basin is expected to extend by 3.4, 
2.9, and 6.8percent within 2020, 2050, and 2080 respectively. 

4.5 Climate Change on Gelana River Water resource 

According to MoWR (2008), The Gelana Stream flows from the eastern to feed the 
Abaya Lak. The average yearly min., and max. Discharge is 0.5 and 12.5 m3s-1, 

respectively. 

5.0 Climate Change on Abaya –Chamo Sub-Basin Groundwater resource  

According to Daniel et al. (2022), groundwater resource availability within the 
Southern Ethiopian Rift Valley Basin has been underweighted due to ongoing 
financial exercises and climatic change. Abaya–Chamo lakes basin's steady-state 
groundwater flow modelling. Moreover, the through-flow system in terms of 
groundwater flow direction and gradient, with groundwater flow from the high level 
toward the floor into the lakes from different directions with a high slope as shown in 
table 9. 

Table 9. Water balance of Abaya Lake from ground water 

Term of Flow       In                    out                      In- out 

Storage 0.0E+00               0.0E+0               0.0E+0  

Constant Head 1.970E+04         4.420E+06         - 4.40E+06 
Horizontal Exchange  1.l50E+06          1.l70E+04           1.140E+06 
Lower Exchange                      3.270E+06          9.040E+03             3.260E+ 06 
Recharge 3.770E+02           0.0E+00             3.770E+02 
Saturation of the layer 4.440E+0           4.440E+00           1.0E+00 

Discrepancy (%)                         0 
 
 
Table10. Water balance of chamo Lake from ground water 
 

Term of Flow In                              out               In-out 

     Storage                                0.0E+0              0.0E + 0                 0.0E+0  

Constant Head  0.0E+0              5.710E + 05     - 5.710E+0 
Horizontal Exchange                   8.60E+04           4.750E + 0l           8.550E+04  
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Lower Exchange                        4.850E+05         0.0E + 0               4.850E+05  
Recharge  8.710E+01         0.0E + 00       8.710E+0l 
Sum of the layer  5.710E+05         5.710E + 05        0.0E + 00 
Discrepancy (%)                          0 

 

6.0 CONCLUSION 

There are several rivers and two lakes of various sizes in the Southern Ethiopian Rift 
Valley Basin. Though much of the blame may be attributed to rising demand, climate 
effect and variability will be found to place significant strain on Southern Ethiopian 
Rift Valley irrigation water. 

Climate change has the potential to negatively affect water supply, stability, access, 
utilization, and demand in the Abaya chamo rift valley sub-basin. According to recent 
studies, the basin is extremely susceptible to variations in precipitation and 
temperature. As a result, river flows and runoff to lakes, as well as groundwater and 
lake water levels, are anticipated to fall in future and will be inadequate to meet the 
water demand of the country's population growth. 

Climate change impacts agricultural land used for irrigation, making the design, 
operation, and management of water-use systems more difficult. As a result, 
livelihoods may be disrupted, poverty and marginalization of the poor may increase, 
and inequality may expand. Climate change is increasingly linked to many concerns 
and difficulties surrounding water resources. Climate risk is too costly to be tolerated, 
given the economic importance of water supplies, and immediate efforts to minimize 
the effects must be made using practical solutions. 

The Abaya-chamo Sub-basin feeder Rivers have a maximum annual discharge of 3.5 
m3s-1 from the Kulfo River and a minimum annual discharge of 0.85 m3s-1 from the 
Kola of flow water, as shown in table 11. The Bilate river has a maximum annual flow 
of 43.9 m3s-1, whereas the Hare river has a minimum annual flow of 3.9 m3s-1. Except 
for the Bilate and Kulfo rivers, most rivers have flow rates of less than 2m3s-1 dry 
season period. During the dry season period, the flow rate of these rivers likewise 
diminishes. As a result, as indicated in table 8, this review seeks to the study influence 
of climate effect on river and lake water supply. 

Table 11. Abaya-chamo Sub-basin Rivers discharge 

Rivers Kulfo Hare Bilate Gidabo Gelena Kola 

Min.discharge 

(m3s-1) 

3.5 

 

1.5 

 

2.9 

 

1.7 

 

1.8 

 

0.85 

Max.discharge 

(m3s-1) 

8.5 

 

3.9 

 

43.9 

 

9.1 

 

14 

 

6.2 
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The considering of different base the climate effect on the annual water balance in 
Abaya-chamo lakes Feeder Rivers for future 2021–2050 and future 2071–2100 
periods using RCP 8.5 scenario is tabulated below table 12. 

 

Table 12. Climate change on the annual water balance  

Rivers years Tmax future 
projection 
(%) 

Tavg future 
projection 
(%) 

Tmin future 
projection 
(%) 

RF future 
projection 
(%) 

PET 

Future 
projection 
(%) 

Streamflow 
future 
projection (%) 

 

Bilate 

2050s - 

 

1 - 16.79 14 -9.07 

2080s - 2 - -46.26 19 -11.24 

 

Kulfo  

2050s  2.5 3.5 4.5 -10 - 3.89 

2080s 3 4 5 -20 - 4.135 

Gidabo 2050s 2.1 - 2.3 -33.1 110 − 0.95 

2080s 4.9 - 4.1 -13.1 124.7 − 1.5 

Hare 2050s 0.03oc - 0.15oc 8.08 - 13.4 

2080s 0.11oc - 0.13oc 15.85 - 15.4 

Gelana 2050s - - - - - - 

2080s - - - - - - 
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7.0 RECOMMENDATIONS  

In this study, climate change's effect on groundwater and the availability of some river 
bodies for irrigation like Gelana has been investigated. Future works can consider the 
effect of climate change on water resources for industrial & domestic purposes. 
Furthermore, the effect of climate change on lakes, feeder rivers and other water use 
projects in the future (2021–2050) and (2071–2100) needs to be studied.  
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Abstract: The research was conducted on the field and models of vertisol soil types under varied land 
in southern Ethiopia's semi-arid Arba Minch university research centre site to measure infiltration and 
determine infiltration rates. The infiltration rate and model performance evaluation of the specific land 
use conditions affect the design and evaluation of surface and sub-surface irrigation methods. The 
infiltration rate is investigated on two different types of land (vegetable-covered land and bare land) 
and two different types of models (Horton and Kostiakov models). The experimental infiltration depth 
of the above soil conditions is measured using a double-ring infiltrometer. The research aims to figure 
out the field-measured infiltration rate, model infiltration rates, and basic infiltration rate, identify the 
impact of infiltration factors on infiltration rate, and find the best-fitted infiltration model. The findings 
from multiple infiltration models were compared with actual field data. The graphs of infiltration were 
generated to find the best fitting model for a certain vertisol soil type and two lands. The determination, 
correlation coefficient, bias, root mean square error (RMSE), model efficiency, determination 
coefficient (R2), slope, correlation coefficient (r), average percentage error, and the gradient were the 
performance indicators examined for the optimum fitting of the model. The Kostiakov model's results 
are the best fit to observe field data for estimating infiltration rates at any given period in the research 
region by taking into account the infiltration numerical software performance indicators. The vegetable 
cover land infiltration rate is higher than un-disturbed bare land. 

 KEY WORDS: land use, Infiltration rate, model performance, Dry season, vertisols   
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  1.0 INTRODUCTION 

Water availability is critical for the development of agriculture and food security. The 
satisfaction of increasing population and per capita consumption demands forecasts that 
agricultural productivity will need to expand by 70% by 2050 (FAO, 2009). This population 
increase affects the hydrologic cycle from a local to a global scale through agricultural 
expansion (Rockstrom et al., 2014). The infiltration is the most significant process in the 
hydrologic cycle that affects agricultural water production (Brouwer et al., 1988). In recent 
years, the population has increased rapidly, and rising water consumers from many sectors 
have made the study region's water supply a cause of concern and conflict. 

Surface irrigation system design and evaluation are simplified when infiltration modes 
simulate surface and subsurface flow. The soil's infiltration characteristics are quantified 
when in-situ infiltration data is computationally matched to models' infiltration (Oku E., and 
Aiyelari A., 2011). Several studies on different infiltration models have been conducted to 
determine model parameters, model effectiveness and applicability to various soil conditions 
and land uses (Abubakr Rahimi and Bayzedi, 2012; Asma et al., 2022; Ogbe et al., 2011; 
Sunith et al., 2018; Parveen et al., 2018; and Rashidi et al., 2014). They do not, however, 
consider the interplay between soil and agricultural land use factors in spatial variation. 
Additionally, despite these facts, no clear finding demonstrates infiltration capacity, the best 
fit model, and diverse land-use conditions of the study region's most prominent soil types 
(Vertisols). 

As a result, developing models for specific time and space is critical for accurate in-situ 
quantification of this process. The study's objective was to determine the soils' infiltration 
capacity, model infiltration rate, evaluate infiltration factor on infiltration rate value 
variation, and choose the optimal infiltration model for the study location. Therefore, the 
infiltration rate of different land use and performance of infiltration models (Kostiakov, 
Horton's infiltration models) was investigated in this study using infiltration model 
performance indicators as tools under a vertisols soil type. 
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 2.0 MATERIALS AND METHODS 

 2.1 Descriptions of the Study Area 

The field experiment was implemented in the south-western zone of the South Nation and 
Nationality and People (SNNP) regional state at Arba Minch university demonstration farm, 
located 454 km south of Addis Ababa. Geographically, it is located at a latitude of 5°40'0" N 
to 6°20'0" N, a longitude of 37°20'0" E to 37°40'0" E, and an altitude of 1203m, as shown in 
Figure 1. 

 

Figure 1. The study area Location map 

              

2.2 Treatments' design and setting 

The treatment of this study consists of one field infiltration measurement method (Double 
Ring infiltrometer method), two types of land use conditions (bare and vegetable cover land), 
and a vertisol soil type, which were used for the measurement of all infiltration data. There 
were a total of 4 samples for each land use condition site. 

The double ring infiltrometer instrument was settled and driven 15cm deep into the soil. The 
size of the infiltrometer is 25cm in-depth, 30 cm in inner and 60 cm in outer diameter. 

2.3 Materials to Conduct an Infiltration Test 

 The infiltrometer (double ring) has a diameter of 30 & 60 cm and a 25cm height. 

 A hammer is used to drive the ring into the soil. 

 A spade is used to collect soil samples from the site to determine physical properties. 

 Bags are used to transport soil samples to the laboratory. 

 A transparent ruler measures the amount of water depleted in the soil with respect to time. 
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 A Stop Watch is used to read the proposed time. 

 A sufficient amount of water is added to rings for depletion measurement  

 Plastic wrap is used to prevent soil disturbance during the initial water application 

2.4 Infiltration Models  

The following infiltration models were evaluated to determine which model is the best fit for 
the experimental field infiltration rate: 

Horton's model: Horton described the loss of infiltration capability as an exponential drop 
over time and generated the following equation (Horton RL., 1938)  

𝑓𝑓 = 𝑓𝑓𝑓𝑓 + (𝑓𝑓𝑓𝑓 − 𝑓𝑓𝑓𝑓)𝑒𝑒2−𝑘𝑘𝑘𝑘                                                       (1) 

Where:  f = infiltration capacity at any time t; fc = final steady-state infiltration capacity; fo 
= initial infiltration capacity; k = Horton’s constant representing the rate of decrease in 
infiltration capacity; t = time in hours. 

Kostiakov model (Kostiakov AN, 1932) 

                                                 𝑓𝑓 = 𝑎𝑎𝑡𝑡𝑏𝑏                                                                             (2) 

Where: f = cumulative infiltration at any time t; a and b = constants, t = time in minute,  

Model Performance Indicators: Two infiltration models (Horton, and Kostiakov) were 
evaluated with the comparison of field observed infiltration rate simultaneously using the 
infiltration parameters. Several researchers used a variety of statistical methods for 
comparison of infiltration model performance like: Nash-Sutcliffe (NS), root means square 
error (RMSE), and determination coefficient (R2) indicator (Parveen et al., 2018; Asma et 
al., 2022). 

The R2 and the RMSE were used to assess each model's goodness of fit in terms of how it 
describes the field measured infiltration well. The R2 value reflects how well each model 
explains data variances, but the RMSE reveals how far the model results differ from the 
observed values. As a result, a high R2 value near 1 and a low RMSE value around 0 both 
imply that the anticipated and observed infiltration curves are in good agreement.  

The RMSE is a measure of the difference between projected and measured values and is 
widely used to assess the exact hydrology models. The RMSE formula describes as follow: 

                                              𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 =  ��∑ (𝒑𝒑𝒑𝒑−𝒐𝒐𝒑𝒑)𝟐𝟐𝒏𝒏
𝒑𝒑=𝟏𝟏 �

𝒏𝒏
                                                      (3) 

Where: Pi is Predicted results; Oi is Measured results, and n is the measurements number 

Determination coefficient (R2) is the predicted value of the infiltration rate plot versus 
observed values. Its value is greater than 0.75, indicating that the best fit to the observed data 
is described as the following formula. 

                                               𝑅𝑅2 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆

                                                                       (4) 
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 Where: SSE is explained as the Sum of Square simulated data, and SST is the Total Sum of 
Square simulated data 

The R2 values indicate the degree to which each model explains data variations. RMSE shows 
the amount of divergence of the model values from the observed values.   

Nash Sutcliffe: When comparing hydrological parameters, Nash-Sutcliffe is the most 
commonly utilized method. Nash-equation is:  

                                            𝑁𝑁𝑁𝑁 = 1 − ∑ ((𝑦𝑦𝑘𝑘𝑦𝑦𝑚𝑚)−𝑦𝑦𝑘𝑘𝑦𝑦)2𝑛𝑛
𝑡𝑡𝑡𝑡=1
∑ ((𝑦𝑦𝑘𝑘𝑦𝑦−𝑦𝑦�)2)𝑛𝑛
𝑡𝑡𝑡𝑡=1

                                                     (5) 

 

 

Where: n is the observed data number; yti is the value of observation; ytim is value of model, 
and y is the value of average observation    

A very satisfactory performance indicates of Nash-Sutcliffe is above 90%, 80–90% value 
range indicates fairly good performance, and below 80% indicates an unsatisfactory fit. 

 Bias: it is the performance indicator of an infiltration model, which calculates the average 
difference between the observed and predicted index values. The bias value is zero, called 
"unbiased." It is defined by: 

                                                     𝐵𝐵𝐵𝐵𝑎𝑎𝐵𝐵 =  ∑ (𝑥𝑥−𝑦𝑦)𝑛𝑛
𝑡𝑡
𝑛𝑛

                                                              (6) 

Percentage average error is defined as follows: 

                                                     𝑃𝑃𝑃𝑃𝑃𝑃 =  
∑ �𝑥𝑥−𝑦𝑦𝑦𝑦 �𝑛𝑛
𝑡𝑡=1

𝑛𝑛
∗ 100                                                (7) 

Where: PAE is average percentage error, x is values of observed data, y is values of computed 
data    

Models selection criteria: the selection of the model's criteria are:  they are most popular, 
simple, and applicable in the irrigation field, and the main one is to compare semi-empirical 
(Horton equation) and empirical (Kostiakov equation).   

1.5 Data Collection and Analysis   

Field infiltration tests, laboratory analysis, and documentation were all used to collect data. 
Soil infiltration rates were measured on two different soil types. The primary data for the 
infiltration test and the examination of soil physical parameters were obtained in the 
laboratory. 

The soil infiltration rate of the study locations during the dry season was measured with a 
Double Ring Infiltrometer. For vegetable cover land conditions found at the Arba Minch 
demo farm, readings were obtained at regular intervals of 2, 5, 10, 20, 25, 30, 45, 60, and 80 
minutes. Similarly, for bare land condition, which is found at Arba Minch demo farm, 
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infiltration data were taken at 2, 5, 10, 20, 25, 30, 45, 60, and 80 minutes until a steady 
infiltration rate is achieved on vertisol soil type. 

3.0 RESULTS AND DISCUSSION 

3.1 Field Measured Infiltration and Basic Infiltration Rate  

The observed infiltration rate on vertisols for bare and vegetated land use conditions was 
calculated using the double ring method. It is shown in table 3.1, and the infiltration rate in 
vegetable-covered land is higher than in bare land throughout the same elapsed time interval. 

Table 3.1 displays the experimental infiltration rate under different land-use. 

Elapsed 
Time, 
min.     

Elapsed 
Time, 
hr.   

Cumulative  
Time, hr. 

Cumulative 
infiltration (I) cm 

 Infiltration depth 
(d) cm 

Infiltration rate (i) cm hr-. 

   
Vegetable  
cover 
land  

Bare 
land  

Vegetable  
cover 
land  

Bar
e 
land  

Vegetable  
cover 
land  

Bare land  

0 0 0 0 0 0 0 0 0 
2 0.033 0.033 5.74 4.1 5.74 4.1 172.2 123 
2 0.033 0.067 9.94 7.1 4.2 3 126 90 
5 0.083 0.117 13.44 9.6 3.5 2.5 42 30 
5 0.083 0.167 16.66 11.9 3.22 2.3 38.64 27.6 
10 0.167 0.25 19.74 14.1 3.08 2.2 18.48 13.2 
10 0.167 0.333 22.68 16.2 2.94 2.1 17.64 12.6 
15 0.25 0.417 25.2 18 2.52 1.8 10.08 7.2 
15 0.25 0.5 27.58 19.7 2.38 1.7 9.52 6.8 
30 0.5 0.75 29.68 21.2 2.1 1.5 4.2 3 
30 0.5 1 31.64 22.6 1.96 1.4 3.92 2.8 
45 0.75 1.25 33.32 23.8 1.68 1.2 2.24 1.6 
45 0.75 1.5 34.72 24.8 1.4 1 1.867 1.333 
60 1 1.75 35.98 25.7 1.26 0.9 1.26 0.9 
60 1 2 37.1 26.5 1.12 0.8 1.12 0.8 
80 1.333 2.333 38.08 27.2 0.98 0.7 0.735 0.525 
80 1.333 2.667 38.99 27.82 0.91 0.62 0.6825 0.465 
80 1.333 2.667 39.89 28.43 0.9 0.61 0.68 0.4575 

 

The final steady infiltration rate (ic), and the initial infiltration rate (io), under different land-
use conditions within vertisols, were calculated by a graphical approach. The vegetable-
covered land basic infiltration rate and the initial infiltration rate values are 0.68 and 172.2 
cm hr- respectively, as well as the bare land basic (final) infiltration rate and initial infiltration 
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rate values, are 0.46 and 123 cm hr-1, respectively. As the result, the value of the final and 
initial infiltration rates differ for all land use conditions.  

The result observed that the initial and basic infiltration rates were higher in vegetable cove 
land than in bare land. There is a slight deviation for initial infiltration in the case of vegetable 
cove land and bare land, and the difference is (49cm hr-1), but the basic infiltration rates 
difference is almost small (0.21 cm hr-1) in both cases. 

3.2 Modeling Soil Water Infiltration 

The results of the computed values of infiltration rates using developed model equations for 
vegetable cover soil condition and bare land are tabulated in Table 3. 2. From the result, the 
values of infiltration rate of the Kostiakov model in both vegetable cover land and bare land 
are most closely matched to the field measured value compared to the Horton model 
throughout the same elapsed time interval. 

Kostiakov model infiltration rates go to a constant at the time of 180 minutes for both 
vegetable land use conditions and undisturbed bare soil conditions, which is 0.798 cm hr- and 
0.56 cm hr-1, respectively. The Horton model basic constant infiltration rate for both 
vegetable soil use condition and undisturbed bare soil condition at the same time of 180 
minutes is different at 0.74 cm hr- and 0.52 cm hr-1. respectively. 

Therefore, the basic constant rate of infiltration is different from model to model and different 
soil use conditions at the same measurement time and elapsed time. 

Table 3. 2: Different model infiltration rate values. 

Time, 
hr 

Obs. infil. rate (cm hr-1) 
Horton's infil. rate 
(cm hr-1) 

kostikove infil. rate 
(cm hr-1) 

vegetable  
cover 
land 

bare 
land 

vegetable  
cover 
land 

bare 
land 

vegetable  
cover 
land 

bare 
land 

0 0 0 0 0 0 0 
0.03 172.2 123 159.33 114.04 270.14 194.28 
0.067 126 90 144.51 103.67 107.51 77.1 
0.12 42 30 124.84 89.86 51.1 36.56 
0.16 38.64 27.6 107.86 77.89 31.81 22.72 
0.25 18.48 13.2 84.56 61.4 18.55 13.23 
0.33 17.64 12.6 66.33 48.43 12.66 9.02 
0.42 10.08 7.2 52.05 38.21 9.41 6.76 
0.5 9.52 6.8 40.88 30.17 7.38 5.25 
0.75 4.2 3 19.95 14.95 4.31 3.06 
1 3.92 2.8 9.91 7.52 2.939 2.084 
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1.25 2.24 1.6 5.1 3.9 2.18 1.55 
1.5 1.87 1.33 2.79 2.14 1.71 1.21 
1.75 1.26 0.9 1.69 1.28 1.4 0.99 
2 1.12 0.8 1.16 0.86 1.17 0.83 
2.33 0.735 0.525 0.85 0.61 0.95 0.67 
2.67 0.68 0.465 0.74 0.52 0.798 0.56 
2.67 0.675 0.4575 0.74 0.52 0.798 0.56 

 

  

 

Figure 4. 1: Observed and model's Infiltration Rate: (a) Vegetable cover land and (b) Bare 
land  
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                 The values of the two infiltration model parameters, the basic infiltration rate ic and the initial 
infiltration rate io under various land use conditions within vertisols, were determined by a 
graphical approach. From the results, the values of infiltration models are constant; the final 
and initial infiltration rates vary for all land use conditions and are presented in table 3. 3. 

Table 3.3: Models' parameters, initial and final basic infiltration rates 

Land use 
condition 

Observed        Kostiakov       Horton's 
   io   ic    io  ic   a    b    io    ic k 

Vegetable 
land 

172
.5 

0.
68 

270.
14  

0.
8  

2.9
39 

-
1.33 

159.
33 

 0.
74 

-
2.
94 

Bare land 
123
.5 

0.
46 

194.
28 

0.
56 

2.0
84 

-
1.33
4  

114.
04 

 0.
52 

-
2.
87 

                

Kostiakov and Horton's regional equations were generated from two land conditions 
(vegetable land cover and bare land) on vertisol soil type, shown in Table 3.4. The results of 
the generated equations were used to determine the Horton and Kostiakov model's infiltration 
rate in the study area. 

Table 3. 1: Generated regional equation of Kostiakove and Horton equation. 

                 

 

3.3 Impact of Different Land Use on Infiltration Rate and Models 

The impact of infiltration factors (vegetable cover and bare land condition) on the observed 
and model's infiltration varies with the same time interval, shown in table 3.5 and figure 4.2. 
The basic, initial, and instantaneous infiltration rates vary between the vegetable cover and 
bare land condition on observed, Horton's, and Kostiakov model results, which are presented 
in table 4 in per cent. The result shows that the factor of vegetable cover land condition 
contains high infiltration while bare land condition contains low infiltration, which varies 
between 67.65% and 70.2%; and 71.6 and 71.72% of the basic and initial infiltration rate, 
respectively. 

Land use condition Kostiakov Horton's 
Generate equation Generate Equation 

Vegetable land i(t) = 2.939t-1.33 it = 0.67+ 175e-2.94t 

Bare land i(t) = 2.08t-1.334 it = 0.46+ 125e-2.87t 
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Table 3.5: Infiltration variation vegetable cover and bare land condition on field observation, 
Horton's, and Kostialove models 

infiltration 
condition 

Field Observed Kostiakov Horton's 
io ic io ic io ic 

Vegetable cover 
land greater than 
Bare land 
infiltration rate (%) 

71.6 67.65 71.72 70 71.57 70.2 
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 Figure 4. 2: vegetable cover and bare land condition impact on: (a) infiltration rate of 
observed, (b) infiltration rate of Horton's model, (c) infiltration rate of Kostiakov model  

                 

3.4 Model Performance Evaluation 

The prediction was done using both empirical infiltration models (Horton's, and Kostialove) 
and compared with the field-measured cumulative infiltration. The infiltration 
models' performance was evaluated using bias, and root mean square error (RMSE), model 
efficiency, determination coefficient (R2), slope, correlation coefficient (r), and average 
percentage error (PAE) statistical criteria. The best fit model was selected by considering 
infiltration model performance indicators like the minimum bias, average percentage error, 
root mean square error (RMSE), slope, and maximum model efficiency criteria, tabulated in 
Table 3.6. 

The results are in table 3.6, which shows that for both land use (vegetable land and bare land) 
conditions, the Kostiakove model under: determination coefficient, correlation coefficient, 
bias, determination coefficient (R2), root mean square error (RMSE), model efficiency, slope, 
correlation coefficient (r), average percentage error, and slope performance indicator 
consideration, is the best fit to the observed values, than Horton's model the study area.  

Table 3. 2: The infiltration model performance indicators 

Model performance indicator 
Kostiakov Horton 

Vegetable 
cover land 

Bare 
land 

Vegetable 
cover land 

Bare 
land 

Coefficient of determination (R2) 0.949 0.946 0.987 0.986 
Slope 1.329 1.334 2.94 2.87 
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Correlation coefficient (r) 
8.8E-06 

1.7E-
05 

6.7E-06 
1.3E-
05 

Roor mean squir error (RMSE) 35.92 26.2 24.37 17.71 
Bias -21.88 -16.1 -4.33 -3.18 
Nash–Sutcliffe efficiency coefficient (NS) 41.81 42.3 73.22 73.63 
Percentage average error (PAE) -43.03 -44.7 2.06 2.07 

                 

4.0 CONCLUSION AND RECOMMENDATIONS 

4.1 Conclusion 

This study determined the infiltration rate on vegetable cover land and bare land using an 
infiltration factor, identified models' infiltration rates and evaluated the Horton's and 
Kostiakov infiltration models' performance on vertisols in Arbaminch southern 
Ethiopia.  The double ring infiltrometer infiltration measure method was used on both 
vegetable cover land and bare land within the study area. 

The results show that the constant or basic infiltration rates of the field observed, Korsakov 
and Horton's models on vegetable land-use conditions were 0.68, 0.8, and 0.74 cm hr-1, and 
on bare, land conditions were 0.46, 0.56, and 0.52 cm hr-1, respectively. It shows that 
different land conditions affect field infiltration rates as well as model infiltration rates. The 
vegetable land cover conditions considerably impacted the infiltration rate by increasing soil 
porosity, so vegetable cover soils showed more infiltration rate than bare soil conditions for 
both models and fields. 

Infiltration models with field data use the determination coefficient (R2), root means square 
error (RMSE), model efficiency, slope, correlation coefficient (r), percentage average error, 
and the slope performance indicator. After analysis, the values of the constant infiltration rate 
of vegetable cover land are higher than the bare land. The constant infiltration rates of both 
Horton and Kostiakov models vary from land use. It is observed that for both types of land 
use conditions, the infiltration rates for experimental data and models infiltration data do not 
exactly coincide. However, the kostiakov model, is more fit to observe field data than 
Horton's model in the study area. 

4.2 Recommendations 

The vegetable land cover condition had a considerable impact on increasing infiltration rate 
by controlling the runoff soil, so vegetable cover soils showed more infiltration rate than bare 
soil conditions in vertisols during dry seasons. So we utilized different infiltration rate for 
their design and evaluated surface irrigation methods on both vegetable land use conditions 
and bare land. 

The best-fitting model in the study area is kostiakov Model for both vegetable land cover and 
bare land use conditions by considering Bias, root mean square error (RMSE), model 
efficiency, determination coefficient (R2), Slope, Correlation coefficient (r), average 
percentage error, and the slope performance indicator. Therefore, compared to that Horton's 
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model, the kostiakov infiltration model is recommended to calculate the infiltration rate of 
Vertisols for the dry season. 

We recommend that further study can identify other hydrologic processes, addressing 
additional land use conditions, soil type, model performance indicator, infiltration 
measurement methods, and all infiltration factors during both dry and wet seasons. 
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