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Abstract— Inland water bodies are critical ecosystems that serve 

several functions, including providing fresh water, regulating climate 

and hydrological flows, and controlling pollution. Therefore, effective 

water resource monitoring and management is crucial in enhancing the 

sustainability of water supply systems. This study evaluated the possible 

use of satellite data to estimate water quality parameters (WQPs) in an 

inland water body. The study also used Artificial Neural Network 

(ANN) models and satellite data to determine the optimum coagulant 

dose for water treatment. Earth observations and machine learning meth-

ods have not been used extensively in developing countries, specifically 

in water quality monitoring and management. The study utilized empir-

ical multivariate regression modeling (EMRM) of the spectral reflec-

tances from satellite data to retrieve Chl-a, Total Suspended Solids 

(TSS), and Turbidity concentrations in an inland water body. Using Ar-

tificial Neural Networks-Multilayer Perceptron modeling, the extracted 

spectral reflectance values from the selected sampling points in the res-

ervoir were used as model inputs to predict treated WQPs. A second 

Artificial Neural Networks-Multilayer Perceptron model was developed 

to predict the optimum coagulant dose required for raw water treatment. 

The R2 values achieved with ANN model 1 were 0.81, 0.76, and 0.81, 

respectively for TSS, Turbidity, and Chl-a, and 0.99 for the optimum 

coagulant dose. The study concluded that spectral reflectance from me-

dium-resolution satellite data products can be used to estimate WQPs 

from inland water bodies. Further, the ANN models demonstrate that 

extracted water quality data from satellite images can be used for water 

quality predictions and the optimization of water treatment plant opera-

tions.  
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1 Introduction  

About two-thirds of the earth’s surface is covered by water resources, yet only 3% of this is portable water (1). 

Furthermore, 25% of the global population still lacks access to sufficient quantities of good quality water (1). 

Inland water bodies are critical ecosystems that serve several functions, including providing fresh water, regulat-

ing climate and hydrological flows, pollution control, recreation, and irrigation (2). However, factors such as 

urbanization, climate change, environmental degradation, and unsustainable agricultural practices continue to 

contribute to deteriorating water quality (3). These changes negatively impact the sustainability of inland water 

resources by advancing algae proliferation, accelerating eutrophication, and increasing the concentration of tur-

bidity and total suspended solids (TSS). Effective management and use of the existing water resources can be 

achieved by measuring water quality parameters (WQPs) thus facilitating effective management of the surface 

water resources.  

Using satellite data for water quality monitoring (WQM) has proven useful in protecting water sources and 

improving the effectiveness of the water treatment processes (4). WQM and forecasting also predict pollution 

levels, allowing for advanced action plans to optimize water treatment plant (WTP) operations (4). Remote sens-

ing techniques have continued to advance, thus finding wider applications in WQM (3, 5, 6). Remote sensing 

techniques can be used with artificial neural networks (ANNs), which can model non-linear geophysical transfer 

functions, including non-linear environmental processes (7). Combining remote sensing and ANN can also help 

to reduce the limitations of in situ sampling by using satellite data to predict WQPs at unsampled locations in a 

water supply reservoir. The concept can then be used to inform decisions on potable water treatment by using the 

satellite data and ANN to create a system to determine the optimum coagulant dose for portable water treatment.  

The use of satellite imagery, specifically, Landsat images, has been used in extracting water quality data in 

inland water bodies in recent decades. Patra, Dubey (8) used in situ water quality data and Landsat Operational 

Land Imager (OLI) images to estimate the concentration of Chl-a. To correlate the in situ Chl-a concentrations 

with different OLI bands, a Pearson correlation analysis was done. The ratio between OLI5/OLI4 was the most 

optimal band combination for the estimation of Chl-a with an R2 value of 0.85 (8). Bonansea, Ledesma (9) in 

Cassafouth Reservoir in Cordoba, Argentina where Landsat-8 and Sentinel-2A images were used to estimate and 

map secchi disk transparency. The developed models achieved R2 values between 0.6 and 0.94. The achieved R2 

values showed the feasibility of using satellite data in estimating and mapping reservoir WQPs. 

Pizani, Maillard (10) compared water quality data measured in situ from a hydroelectric reservoir in Brazil to 

data obtained from Landsat-8 OLI and Sentinel-2 Multispectral Instrument (MSI). Both sensors estimated the 

optically active WQPs with R2 values greater than 0.6. The use of regression models, specifically empirical mul-

tivariate regression models (EMRM) in water quality modeling is demonstrated by (11) and (12). Meng, (11) used 

EMRM in Shanmei Reservoir in Fahzou City to estimate of turbidity, Chl-a, and algae density using Sentinel-2 

MSI, and Landsat 8-9 OLI. Landsat-8 OLI gave better estimates than Sentinel-2 MSI with R2 values of 0.70, 0.81, 

and 0.80, respectively, for Chl-a, algal density, and turbidity. Ouma, Noor and Herbert (12) also used EMRM in 

relating the performance of Landsat-8 OLI and Sentinel-2A/MSI in retrieving the concentration of turbidity, TSS, 

and Chl-a based on in situ WQPs from a water supply reservoir. Both studies showed the viability of the sensors 

and the regression models in retrieving water quality data from satellite images. 

The use of ANN models to predict treated WQPs was tested at the Akron WTP in Ohio, USA. Four ANN 

models were developed and used to predict treated water turbidity and dissolved organic materials (13). The 

treated water turbidity was predicted with an R2 value of 0.91, suggesting that ANN models can be useful in 

predicting treated WQPs (13). The ANN modeling approach has also been tested in several studies. Haghiri, 

Daghighi and Moharramzadeh (14) tested an ANN-MLP model in a portable WTP in Ardabil province in Iran. 

The model had a reasonable accuracy with R2 values greater than 0.8 in predicting treated WQPs, an R2 value of 

0.95, and a MSE of 0.12 in predicting the optimum coagulant dose. The use of ANN models for the prediction of 

the optimal coagulant dose for water treatment has also been tested in several studies. (15) developed ANN models 

for optimal coagulant dose forecasting in portable WTPs. Two models were developed depending on the quality 

of the raw water, and these models were tested on a large database of the selected WTPs. The models predicted 

the optimal coagulant dose with R2 values above 0.8, and mean absolute errors (MAE) above 5.4g/m3 (15). The 

study showed the possibility of adopting and using these models in WTPs to optimize the coagulant dosing prac-

tice. Kote and Wadkar (16) developed ANN models based on data from Maharashtra WTP, India to estimate the 
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optimum coagulant and chlorine doses. The CFNN model was the most effective coagulant dose model with an 

R2 value of 0.947while the most effective chlorine dose model was the RBFNN model with an R2 value of 0.999 

(16). 

This study presents a process for optimizing portable water treatment processes using remote sensing and ANN 

through a completely predictive WTP model starting from the reservoir to the final point of the WTP. The concept 

has also been explored by (14) and (16), but the focus of these studies was limited to the water treatment works 

only. A completely predictive WTP model factors catchment processes that negatively impact water quality. As 

a result, the catchment processes largely influence the decisions made at the WTP, including the type and quantity 

of chemicals used. The study used satellite data and in situ water quality data to estimate turbidity, TSS, and Chl-

a from Landsat-8 OLI using EMRM. The extracted WQPs from the Landsat images were then used in ANN 

modeling to predict treated WQPs for the Sosiani WTP. A second ANN model was then trained, validated, tested, 

and used to determine the optimum coagulant dose for the WTP. 

2 Materials and methods 

2.1 Study site 

Two Rivers Dam Reservoir is situated in Uasin Gishu County, Kenya, at a longitude of 35° 35' 14" and latitude 

of 0° 46' 88", as shown in Figure 1 (3). The dam supplies the Sosiani Water Treatment Plant, where the water is 

treated and distributed to Eldoret town and its environs. 

 

 
Fig. 1. Two Rivers Dam and the sampling points 

2.2 Sample site selection 

Thirteen in situ water sampling points were set up in the dam (3). Several sampling points were located where 

River Elligirini and River Endoroto enter the dam and, in the region, where River Sosiani exits the dam. More 

sampling points were also located at the edges where there is a high likelihood of water quality variability (3, 17). 

A GPS receiver was used to locate the sample site. 
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2.3 Sampling and laboratory water quality testing 

The satellite overpass schedule determined the in-situ sample collection dates. Duplicate 1500ml samples were 

collected at 0.5-meter depths at each sampling point, and the turbidity, TSS, and Chl-a concentration was deter-

mined (3). The coagulant dose for water treatment was determined using jar test experiments. The stock solution 

for the coagulant (Aluminum sulfate) was 1 g/L of alum (18).  

2.4 Determination of radiance and reflectance 

The Landsat image acquisition schedule was used to obtain the Landsat images used for the study. Image 

acquisition was done between November 2020 and January 2021. The satellite images were processed using the 

Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) model, as explained in (19).  

2.5 Correlation of satellite data with laboratory water quality data 

The 13 sampling points were then overlaid on the images’ regions of interest (ROIs). For each of the sampling 

points, the spectral profile for each of the OLI bands (1-7) was then used to determine the top of atmosphere 

(TOA) reflectance. To minimize errors in locating the sampling points and to improve the EMRM analysis, an 

average spectral reflectance of 3 × 3 pixel neighborhood configuration was used (Reddy, 1997). 

2.6 Empirical multivariate regression modeling 

EMRM was used to correlate satellite and in situ WQPs (19). Different band combinations were used for the 

retrieval of turbidity, TSS, and Chl-a from satellite images (table 1) (3, 11). The water quality retrieval algorithms 

were developed by correlating in situ water quality data with remotely sensed data, forming the basis for the 

regression analysis. The calibration of the EMRM was done using eight sampling points, and model validation 

was performed using five points (3). 

 
Table 1. Remote sensing band combinations (3) 

Type of Band 

Combination 

Band Combination 

Single Band B1, B2, B3, B4, B5, B6, B7 

Band Ratio B3/B1,B2/B1,B4/B1, B1/B3, B4/B3, B4/B2, B1/B4, B3/B2 

Linear Combi-

nation 

B1+B2, B2+B3, B3+B4, B1+B3, B1+B4, B2+B4,  B1+B2+B3, 

B3+B4+B1, B2+B3+B4, B4+B1+B2 

Mixed Combi-

nation 

(B1/B4)+B2,(B1/B3)+B1,(B1/B4)+B1,(B1/B3)+B2,(B1/B3)+B3, 

(B4/B1)+B4 

 

2.7 ANN model training, validation, testing, and application 

ANN models can be used to evaluate complex, non-linear relationships to establish specific data characteristics 

and predict future events (20-22). ANNs, specifically the ANN multilayer perceptron (MLP), have also been used 

to make water quality predictions (20). 

Selection of network architecture, layers, and neurons The ANN MLP network architecture was used (14, 

15). The MLP-ANN network architecture gives accurate predictions even with limited datasets, as in his study 

(23). Two ANN models, each with three layers, were developed to predict treated WQPs, and the optimal coagu-

lant dose as described in (18).  

a) Model 1-Prediction of treated water quality parameters A schematic of the model to predict treated 

WQPs is shown in Figure 2. 
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Fig. 2. ANN model 1 for predicting treated water quality parameters 

An ANN model was developed using the MATLAB software. The process inputs were the raw WQPs, and the 

treated WQPs were the process outputs being modeled. The process control parameter was the alum dose. The 

inputs for the ANN model 1 were the normalized spectral reflectance values from satellite imagery for each spe-

cific sampling day, while the targets were the treated WQPs as shown in the figure. 

b) ANN model 2-Prediction of optimal coagulant dose for water treatment The developed ANN model 2 

was used to predict the optimum coagulant dose for water treatment.  A schematic summarizing the process is 

shown in Figure 3. 

 
Fig. 3. ANN model 2 for predicting optimal coagulant dose 

Normalization Prior to entering the data into the developed ANN models, the data was normalized using the 

normal distribution function shown in equation 1. As a result, the models’ performance was improved (24).  

That is:  

  (𝑥 + 𝑎)𝑛 = ∑ (𝑛
𝑘

)𝑥𝑘𝑎𝑛−𝑘
𝑛

𝑘=0
        (1)  
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where x is the primary quantity, 𝑥̅ is the average of the data, and s the standard deviation. 

Data division and pre-processing The default MATLAB data division was applied to split the data set for 

training, testing, and validation for both models that were developed. 

Model performance and evaluation Model performance was evaluated using root mean squared error 

(RMSE), mean absolute error (MAE) or bias, and the coefficient of determination (R2) as shown in equation 2, 3, 

and 4. 

Coefficient of determination (R2) 

𝑟 =
𝑛(∑ 𝑥𝑦)−(∑ 𝑥)(∑ 𝑦)

√[𝑛 ∑ 𝑥2−(∑ 𝑥)
2

][𝑛 ∑ 𝑦2−(∑ 𝑦)
2

]

                                                              (2) 

 

Where: 

n - Number of pairs of values 

∑xy - Sum of the products of x and y values 

∑x -Sum of x values 

∑y - Sum of y values 

∑x2 - Sum of the squared x values 

∑y2 - Sum of the squared y values 

 

Bias 

𝐵𝑖𝑎𝑠 =
1

𝑛
∑ ⌊𝑋𝑖 − 𝑌𝑖⌋𝑛

𝑖=1                                                                                     (3) 

 

Where: 

Xi - Estimated WQP value for the ith sampling location 

Yi – Lab measured WQP value for the ith sampling location 

n- Total number of sampling locations 

 

Normalized root mean squared error 

 𝑁𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

𝑦𝑖𝑚𝑎𝑥−𝑦𝑖𝑚𝑖𝑛
                                                                                   (4) 

 

 

Where: 

RMSE= Root Mean Square Error 

𝑅𝑀𝑆𝐸 = √
∑ (𝑎𝑖−𝑏𝑖)2𝑛

𝑖=1

𝑛
 

2

                                                              (8) 

 

ai - estimated WQP value at the ith sampling location 

bi – in situ WQP value for the ith sampling location 

n - Total number of sample locations 

ymax – maximum estimated WQP value 

ymin – minimum estimated WQP value 

3 Results and discussion 

3.1 Retrieval of turbidity from satellite images 

The average in situ turbidity was 7.69 NTU. The turbidity in Two Rivers Dam reservoir was low since water 

samples were collected during the dry season between November and January. Therefore, the sediment inflows 

from rainwater discharge into the reservoir was very low. The low sediment loads could also be attributed to plain 
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sedimentation (25). Table 2 presents the Landsat band combinations and the associated regression equations 

through which turbidity values were derived from the remote sensing reflectance (Rrs). 

 

 
Table 2. Regression equations and band combinations for turbidity estimation (18) 

 Regression Equation  Band Com-

bination 

R2 nRMSE 

(NTU) 

MAE 

(NTU

) 

25/11/2020 y=-1169x2+3694x2908 (B1/B4)+B2 0.80 0.26 0.08 

y= -996.8x2+2853x-2031 B1/B4 0.68 0.31 -0.79 

y = -1552x2+2831x-1280 B4/B2 0.73 0.29 0.55 

11/12/2020 y=68165x215713x+908.2 B3+B4+B1 0.76 0.63 -1.57 

y=67304x2-11390x+484.4 B2+B3+B4 0.74 0.57 -1.61 

y = 87184x2-8803+226.4 B2+B4 0.73 1.06 -1.34 

28/01/2021 y = 29.02In(x)+117.7 B4 0.69 0.36 -0.40 

y = 712.1x2-704.5x+175.2 B3/B1 0.74 0.36 -1.80 

y = 130x2-493.6x+471.4 (B1/B3)+B2 0.74 0.36 -1.80 

 

The visible Band 2, Band 3, and Band 4 gave the highest correlation coefficient between in situ and satellite-

derived turbidity, as shown in Table 2. For each sampling date, the polynomial regression models achieved R2 

values of 0.80, 0.76, and 0.74, respectively. Similar results were also obtained from the study by Lotfi, Ahmadi 

Nadoushan, and Abolhasani (26) and Ouma, Noor, and Herbert (12) where turbidity was best estimated using the 

visible Landsat-8 OLI bands. Kalele (27) also demonstrated the viability of the visible red and blue bands in the 

estimation of turbidity, which was achieved with R2 and RMSE values of 0.83 and 0.43, respectively. In a study 

by Hossain, Mathias, and Blanton (28) Landsat-8 OLI data was used in correlation with near real-time in situ 

water quality data in estimating the turbidity of the selected points in Tennessee River in the United States. The 

Red band was more effective in estimating turbidity with an R2 value of 0.95, even though the suitability of using 

single-band water quality retrieval algorithms for the estimation of turbidity is demonstrated by Hossain, Mathias, 

and Blanton (28); the findings of this study similar to what was established by Kalele (27), Lotfi, Ahmadi 

Nadoushan and Abolhasani (26), and Ouma, Noor and Herbert (12) high levels of success can also be achieved in 

using multiple bands in the regression models for turbidity estimation from satellite images. Furthermore, in this 

study, some of the sampling points considered are in the shallow regions of the reservoir. Therefore, the adjacency 

of these points to the land surface could erroneously increase the reflectance from the near-infrared bands (28, 

29). However, the effectiveness of the visible bands in such scenarios is still high since the visible bands are 

largely unaffected by the location of some sampling points in the shallow regions of the reservoir (28, 29). Thus, 

the visible bands are more effective in shallow or narrow fluvial environments in estimating optical water prop-

erties from satellite imagery. 

 

3.2 Retrieval of turbidity from satellite images 

The average in situ TSS for the entire sampling period was 277.91 mg/L. Table 3 presents the regression equa-

tions and band combinations that retrieve TSS from satellite imagery. TSS concentration was notably high at the 

points where River Ellegerini and River Endoroto entered the reservoir, causing sediment resuspension. 
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Table 3. Retrieval of total suspended solids from satellite images (18) 

 Regression Equation Band 

Combi-

nation 

R2 nRMSE 

(mg/l) 

Bias  

(mg/l

) 

25/11/2020 y=5340In(x)+2754 B3/B2 0.79 0.70 -9.98 

y = 7930x – 9457 (B1/B4)

+B2 

0.80 0.49 0.24 

y=17955x2–47361x +33603 (B1/B3) 

+ B2 

0.81 0.73 -7.84 

11/12/2020 y = 635.9e53.65x B4 0.85 0.38 2.66 

y=4640x2-23267x+31152 (B1/B4) 

+ B2 

0.80 0.29 4.20 

y=77928x2-64825x+15537 (B4/B1) 

+ B4 

0.82 0.29 3.51 

28/01/2021 y=-6131x2+25640x– 23721 (B1/B4) 

+ B1 

0.76 0.50 15.86 

y=-6139x2+25265x– 22910 (B1/B4) 

+ B2 

0.76 0.50 15.70 

y=-79430x2+83798x– 

18978 

(B4/B1)  

+ B4 

0.77 0.54 16.55 

 

The optimal bands for TSS estimation in this reservoir were the visible B1, B2, B3, and B4. TSS was best 

estimated using the exponential, logarithmic, and polynomial regression models with R2 values of 0.85, 0.81, and 

0.77, as shown in Table 3. Studies have shown that high concentrations of TSS are very sensitive when detected 

using B4, while low concentrations of TSS are detected at B3 (30). Furthermore, the combination of B2 and B3 

with B4 gives higher accuracy in extracting water quality data from satellite images, as shown in the study by 

Adawiah and. Similarly, in this study, the regression models incorporating B4 achieved the highest R2 values, 

which denotes the sensitivity of the red band (B4) to the presence of TSS in inland water bodies. Yanti, Susilo, 

and Wicaksono (31) also showed the effectiveness of the single band 4 in their study, where TSS estimation using 

B4 and a linear regression model yielded an R2 value of 0.543. In this study, the single-band regression model for 

B4 based on the logarithmic regression model achieved a high accuracy in estimating the concentration of TSS 

with R2 value of 0.85. However, Yanti, Susilo and Wicaksono (31) demonstrated that the single band red cannot 

be used in isolation to effectively estimate TSS in inland water bodies. However, this study demonstrated the 

effectiveness of the single red band in TSS estimation and mapping. 

 

3.3 Retrieval of chlorophyll-a from satellite images 

 

The average in situ Chl-a for the entire sampling period was 46.51 mg/l. One of the main economic activities 

in the catchment is farming, meaning that the inflow of fertilizer leachate into the catchment could contribute to 

the high Chl-a concentration. Nutrient flows and algae proliferation in the reservoir increases due to rainy seasons, 

which facilitate the inflow of nutrients into the reservoir. Furthermore, the dry season that ensues after the rainy 

season also provides conducive conditions for the incubation of algae (32). Table 4 summarizes the regression 

equations and the band combinations used for the retrieval of Chl-a concentration. 
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Table 4. Regression equations and band combinations for Chl-a estimation 

 Regression Equation Band 

Combi-

nation 

R2 nRMSE 

(mg/l) 

Bias 

(mg/l) 

25/11/2020 y = 21293x2 – 32118x+ 12136 B3/B1 0.80 0.24 3.67 

 y = 7820x2 – 20734x+ 13767 B1/B3 0.80 0.23 3.09 

 y = 16746x2 – 53631x+ 42964 (B1/B4) 

+ B1 

0.81 0.41 -3.70 

11/12/2020 y = 8797x2 – 7585x + 1658 B4/B1 0.68 0.49 10.34 

 y = 7556x2 – 6881x + 1591 (B4/B1) 

+B4 

0.68 0.53 10.97 

28/01/2021 y = -8121x2 + 8983x – 2389 (B4/B1) 

+ B4 

0.92 0.72 16.89 

 y = -9145x2 + 9639x – 2444 B4/B1 0.93 0.68 16.23 

 

Chl-a was best estimated using the polynomial regression models specifically from the B1, B3, and B4 with 

R2 values of 0.80, 0.68, 0.93 for the specific sampling dates (18). Similarly, Jaelani, Limehuwey (33) also obtained 

comparable results using water quality retrieval algorithms developed using the visible bands, and the models 

achieved R2 values greater than 0.5. However, Lai, Zhang (34) showed that combining the visible B2 and the near 

infrared bands could be the optimal band combination for Chl-a data retrieval. On the contrary, in this study, the 

near-infrared bands did not effectively retrieve Chl-a data from this reservoir. The findings were confirmed by 

Lai, Zhang (34), who found that the combination of near-infrared and blue Landsat-8 OLi bands was not so ef-

fective in the retrieval of Chl-a from inland water bodies. 

3.3 Validation of in situ and predicted water quality parameters 

The developed regression equations were validated using data from the five (5) sampling stations not used for 

model development. The validation results are presented in Table 5 (3). 

 
Table 5. Validation results for in situ and estimated water quality parameters (3) 

25/11/2020 Wa-

ter 

Qual-

ity 

Pa-

ram-

eter 

Data 

Source 

Sam-

ple 

(n) 

Min. Max. Med. Avg. SD CV 

(%) 

SE 

Tur-

bidity 

In situ 13 4.00 10.00 8.00 7.38 1.94 26.25 0.54 

 Land-

sat-8 

OLI 

13 4.50 10.13 7.49 7.44 1.96 26.31 0.54 

TSS In situ 13 250.6 300.4 273.00 271.15 15.04 5.55 4.17 

 Land-

sat-8 

OLI 

13 253.75 300.67 268.23 268.17 13.37 4.99 3.71 

Chl-a In situ 13 23.08 59.42 35.14 37.17 11.04 29.71 3.06 

 Land-

sat-8 

OLI 

13 23.58 60.67 33.97 37.44 12.08 32.26 3.35 

11/12/2020 Tur-

bidity 

In situ 13 4.00 13.00 6.00 7.08 2.63 37.15 0.73 
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 Land-

sat-8 

OLI 

13 4.02 12.90 6.27 6.25 2.24 35.92 0.62 

TSS In situ 13 205.80 349.40 287.60 281.42 34.57 12.29 9.59 

 Land-

sat-8 

OLI  

13 200.02 333.88 285.62 279.89 29.82 10.66 8.27 

Chl-a In situ 13 31.36 83.40 43.40 50.86 17.38 34.17 4.82 

 Land-

sat-8 

OLI  

13 31.87 83.15 57.02 52.35 14.16 27.06 3.93 

28/01/2021 Tur-

bidity 

In situ 13 3.00 17.00 10.00 8.62 3.55 41.18 0.98 

 Land-

sat-8 

OLI 

13 5.38 16.86 6.89 7.99 2.97 37.22 0.82 

TSS In situ 13 207.60 321.30 284.80 281.17 31.56 11.23 8.75 

 Land-

sat-8 

OLI  

13 207.85 308.58 287.54 285.07 26.64 9.35 7.39 

Chl-a In situ  13 24.22 80.86 39.78 44.75 19.19 42.88 5.32 

 Land-

sat-8 

OLI 

13 29.52 76.22 45.56 49.73 15.89 31.94 4.41 

 

Figure 4(a-c), Figure 5 (a-c), and Figure 6 (a-c) present the laboratory-measured and Landsat-predicted results 

for turbidity, TSS, and Chl-a.  

 
Fig. 4a: In situ and sensor-predicted turbidity variations for 25/11/2020. 
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Fig. 4b: In situ and sensor-predicted TSS variations for 25/11/2020. 

 
Fig. 4c: In situ and sensor-predicted Chl-a variations for 25/11/2020. 
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Fig. 5a: In situ and sensor-predicted turbidity variations for 11/12/2020. 

 
Fig. 5b: In situ and sensor-predicted TSS variations for 11/12/2020. 
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Fig. 5c: In situ and sensor-predicted Chl-a variations for 11/12/2020. 

 
Fig. 6a: In situ and sensor-predicted turbidity variations for 28/01/2021. 
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Fig. 6b: In situ and sensor-predicted TSS variations for 28/01/2021. 

 
Fig. 6c: In situ and sensor-predicted Chl-a variations for 28/01/2021. 

 

The use of satellite data to estimate WQPs from the water supply reservoir can be useful in improving the 

efficiency of the WTPs' operations. This is particularly important because of the changing weather patterns, which 

largely contribute to the variability of water quality characteristics in the catchment. Therefore, the satellite data 

can be used to anticipate and plan for WTP processes, mainly, the chemicals used. 
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3.5 ANN model 1: Prediction of treated water quality parameters 

ANN model 1 results are shown in Figure 7, and Table 6.  

 
Fig. 7. ANN model 1 predictions of treated water quality parameters 

 

In comparing the in situ and satellite-derived water quality data, the ANN 1 model predictions achieved R2 

values of 0.87, 0.99, and 1.0 for Chl-a, turbidity, and TSS, respectively (Table 6). The MSE values from the model 

were 0.0252, 0, and 0.0026 for Chl-a, TSS, and turbidity, respectively. Similar ANN-MLP models were used by 

Haghiri, Daghighi, and Moharramzadeh (14) and Setshedi, Mutingwende, and Ngqwala (35) to predict treated 

WQPs. The models learned and understood the data, as evidenced by the predictive accuracies, and achieved R2 

values greater than 0.8 (35). Similar studies by Kennedy, Gandomi, and Miller (13) and Seo, Yun, and Choi (36) 

also developed an ANN model to predict treated WQPs. The studies also showed that ANN models can be used 

to predict treated WQPs as a function of the coagulant dose. 

The ANN model in this study was used in a WTP, unlike the models in the studies by Setshedi, Mutingwende, 

and Ngqwala (35), Kennedy, Gandomi and Miller (13), and Seo, Yun, and Choi (36), which were tested on dams 

and rivers. However, these models were accurate in predicting the WQPs, and this showed the opportunity to 

extrapolate these models for water quality predictions in a portable WTP. 
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3.6 ANN Model 2: Prediction of Optimum Coagulant Dose 

ANN model 2 results are shown in Figure 8.  

 

 
Figure 8: ANN model 2 predictions of optimum coagulant dose 

 

The model predicted the optimum coagulant dose with an R2 of 0.9987 and an MSE of 0 mg/l. (16) developed 

an ANN model to mimic jar test experiments in determining the optimum coagulant dose. Compared to the actual 

coagulant dose for water treatment, the predicted coagulant dose was comparable with R2 values of 0.81 and MSE 

of 5.47g/m3. Haghiri, Daghighi and Moharramzadeh (14) also obtained similar results, who also modeled jar test 

experiments, and the model predictions achieved an R2 value of 0.93 and an MSE value of 0.37. (37) also devel-

oped an ANN-MLP model with limited data, similar to this study, for optimum coagulant dose prediction in a 

WTP. The model achieved an R2 value of 0.8 and an RMSE value of 12.51. The accuracy of the ANN models 

shows the potential of ANN modeling for coagulant dose forecasting, and the model accuracies can be increased 

by increasing the dataset. A similar study used data from large databases to predict the optimal coagulant dose 

(15). The accuracies achieved by these models was relatively high compared to that which can be achieved using 

small datasets. Furthermore, in using relatively large datasets, the study also showed the possibility of model 

transfer for use in similar WTPs. 

4 Conclusions  

The results from this study showed the potential of using Landsat 8-OLI for water quality predictions and 

estimation of the optimal coagulant dose for water treatment. The visible Band 2, Band 3, and Band 4 gave the 

highest correlation coefficient between in situ and satellite-derived turbidity with R2 values greater than 0.7. The 

visible B1, B2, B3, and B4 were ideal for TSS estimation, with R2 values above 0.7 when comparing the in situ 

and satellite-derived water quality data. B1, B3, and B4 were ideal for Chl-a estimation with R2 values above 0.68 

when comparing the satellite-derived and in situ water quality data. In comparing the in situ and satellite-derived 

water quality data, the ANN 1 model predictions achieved R2 values of 0.87, 0.99, and 1.0 for Chl-a, turbidity, 

and TSS, respectively. The MSE values from the model were 0.0252, 0, and 0.0026 for Chl-a, TSS, and turbidity, 

respectively. ANN model 2 predicted the optimum coagulant dose with an R2 of 0.9987 and an MSE of 0 mg/l. 
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Thus, the ANN models can improve the efficiency of WTP operations by reducing the need for jar test experi-

ments, especially with highly variable raw water quality characteristics mainly brought about by climate change 

and anthropogenic activities. 

Furthermore, the model accuracies attained also demonstrate the opportunities for ANN modeling in portable 

WTPs by developing and using ANN models that are adaptive to raw water quality changes. The use of ANN 

models in combination with satellite data is currently restricted by Landsat 8-OLI eight-day repeat cycle. Further-

more, models carry a certain margin of error, which challenges developing a completely predictive WTP model. 

However, the ANN models can be developed to run parallel with the main WTP operations.   
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