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Abstract - Recently, every aspect of human existence has been affected by modern 

technologies, including agriculture. The broad range of crops has witnessed setbacks 

in different capacities due to climate change, leading to diseases and infections and 

negatively impacting nutrition. Plant diseases significantly threaten agricultural 

productivity, leading to substantial economic losses and food insecurity. Traditional 

methods of disease identification, such as visual inspection and laboratory testing, are 

time-consuming and require expert knowledge. This study aims to address this 

problem by leveraging Convolutional Neural Networks (CNNs) and FPGA technology 

for real-time potato disease identification. Five CNN models were trained and 

evaluated on the Plant Village dataset, achieving accuracies above 90%. ShuffleNet 

was identified as the most suitable for FPGA deployment, combining high accuracy 

with low inference time due to its efficient architecture. The selected CNN was 

implemented on the Xilinx UltraScale+MPSoC ZCU104 board, demonstrating 

significant power efficiency with a total consumption of 3.333 W, of which 79% was 

dynamic power. The design met all timing constraints, ensuring reliable operation at a 

100 MHz clock frequency, and exhibited low resource utilization with only 0.20% of 

LUTs, 0.07% of LUTRAMs, 0.13% of flip-flops, and 0.18% of BUFGs used. These 

results highlight the FPGA's potential as a power-efficient and high-performance 

alternative to CPU and GPU implementations for real-time CNN inference. Future 

work includes developing a test bench for detailed performance measurement, 

optimizing dynamic power usage, and conducting comparative analyses with other 

platforms. Additionally, expanding the dataset to include more variability and 

validating the system in real-world applications will further enhance its effectiveness. 

This research contributes to the goals of Agriculture 4.0 by providing a viable solution 

for real-time plant disease identification, ultimately aiming at improving agricultural 

productivity and food security. 
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1.0 Background 
Potatoes are a globally important crop and contribute significantly to the economies of many countries [1], [2], 

[3]. In Africa, especially Namibia, potatoes are one of the most consumed horticultural products, accounting for 

39% of the total horticultural fresh produce consumption [4]. However, potato diseases such as early and late 

blight threaten potato production, leading to substantial yield losses (Kanter et al., 2015). Early detection and 

accurate classification of these diseases are essential for effective disease management and control.  Traditional 

methods, such as visual inspection and expert laboratory testing, are widely utilised. However, such methods are 

costly and time-consuming [5], [6]. Convolutional Neural Networks (CNNs) have shown promising results in 

potato disease detection and classification [7]. Thereby, emerging as an effective tool for plant disease 

classification. CNNs are, however, computationally demanding, which prevents effective real-time detection [8], 

moreover most of the existing research made significant efforts on software implementation and other platforms 

such as CPUs and GPUs, which have high power consumption [8], [9], [10]. Field Programmable Gate Arrays 

(FPGAs) provide a viable solution to these challenges, providing parallel computing and havingow power 

consumption [9]. Furthermore, System on Chips (SoCs)-which combine the merits of an FPGA and the 

computational capability of a CPU, have shown efficiency in the implementation of CNNs, compared to other 

platforms [8].  

 

This study further proposes using an agricultural drone, as illustrated in Figure 1, for precision agriculture to aid 

images and data collection from crop fields. This framework will be useful for the classification of plant diseases 

based on the drone images and for producing the required outputs. However, an FPGA could be utilised to 

accelerate the operations of CNN. The novelty of this work is to investigate the hardware-based analysis of a CNN 

for early detection and classification of potato diseases and the potential of using FPGAs for real-time detection 

to prevent the spread of potato diseases. Training and analysis of a CNN algorithm for early detection and 

classification of potato diseases- specifically early blight and late blight 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Drone-oriented structure for potato disease detection 

 

 

2. Review of literature 
Related studies regarding the application of CNNs for plant disease detection and its FPGA/SoC implementation 

were considered in this section. A strategic analysis of the CNN algorithm with respect to layers such as 

convolutional, pooling, and SoftMax with an overview of metrics utilised to evaluate related performance such as 

precision, recall, and F1-score was considered. As a deep learning algorithm, Convolutional Neural networks have 

gained widespread adoption in plant disease classification [11]. It has addressed some of the problems associated 
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with traditional classification methods, such as visual inspection or laboratory testing by experts, which are time-

consuming and costlier. Other studies have focused on applying CNNs to classify potato diseases [7], [12]. In a 

study by [13] a CNN algorithm was developed to detect the healthy status of potato leaves. The authors achieved 

an accuracy of 80%, and their framework was implemented using Python and the Google GPU. Moreover, using 

MATLAB, [14] compared various deep learning algorithms for potato disease classification. The authors used 

five classes: healthy, black scurf, common scab, black leg, and pink rot. The detection was based on the surface 

defects of the potatoes, and the authors reported accurate results. [15] highlighted that CNNs have high 

computational requirements, and implementation on platforms such as CPUs and GPUs introduce the drawbacks 

of high-power consumption and low computational efficiency. However, the authors later ascertained that FPGAs 

are a viable solution to some challenges as they embody the attributes of parallel computing and energy efficiency 

attributes. Despite these benefits, there is a paucity of hardware implementation of CNN for plant disease detection 

on FPGA platforms. 

 

[16], implemented a CNN algorithm to identify the diseases of four types of common crops based on their leaves. 

These crops are beans, rice, coffee, and apple. The author’s implementation was carried out on five platforms: 

FPGA, CPU1, CPU2, CPU2 + GPU and Raspberry Pi. The FPGA-SoC platform was the ZYNQ z7-Lite 7020.In 

comparison to the other platforms the FPGA recorded the highest accuracy (95.71%), highest speed (0.071s), and 

lowest power consumption. [17], [18], [19] implemented a CNN algorithm for the identification of three crops: 

pepper, potato, and tomato. The platform used is PYNQ-Z1 SoC, and GPU boosted CPU was used to train the 

algorithm. The authors compared the performance of the Zynq-SoC to that of other papers in terms of power 

consumption, computational roof, computational requirements, and bandwidth roof. The research reported some 

shortcomings in applying the same to potatoes based on their tested parameters. Most of the reviewed literatures 

demonstrated the potential for using FPGA-SoCs for real-time potato disease detection, however the scope and 

focus do not apply to the peculiarity of potatoes based on the findings of this research rather other generality of 

grains plant diseases. There is paucity in analysing a FPGA-SoC implementation of a CNN for potato disease 

detection, hence a gap in the literature. The present study aims to fill this gap by proposing a new architectural 

framework for implementing a CNN algorithm on an FPGA-based SoC to classify early blight and late blight 

diseases in potato crops. 

 

2.1 CNN Architecture 
The architecture of a CNN includes layers which learn the features of image datasets[20], [21], [22]. The 

convolutional layer is the first layer, carrying out the convolution operation on the input. From this procedure, 

features from the input data are extracted. The next layer is the pooling layer, which is meant to reduce the size 

of the resultant matrix from the convolutional layer. It applies either max pooling or average pooling operation. 

The input then applies non-linearity to the algorithm through an activation function. This allows the network to 

learn complex patterns in the data. 

Furthermore, the bias term is added to the output of the activation function, thereby improving the accuracy of the 

predictions. The fully connected (FC) layer is the last layer of the algorithm. It takes the output from the preceding 

layers and gives out a prediction of what the input data. This layer is a type of artificial neural network, which has 

interconnected neurons. Based on a parameter called the weight, certain neurons are activated based on the 

features extracted as indicated in Figure 2. While, the SoftMax layer produces a probability distribution, indicating 

the probability of the prediction.  

 

 

 

 

 

 

 

 

 

 

Figure 2: Architecture of a CNN algorithm 
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It is important to state that in addition to the layers that make up a CNN, there are other building blocks that are 

essential to the training process [15], [23]. These include forward propagation and backpropagation. The fforward 

propagation refers to the process of passing an input through the layers of the network to produce an output. The 

input is passed through the network to produce a prediction during this process. Backpropagation, on the other 

hand, is the process of computing the gradients of the loss function with respect to the parameters of the network. 

These gradients are then used to update the parameters of the network, such as the weights and biases in the 

convolutional and fully connected layers [20], [24]. 

On the other hand, backpropagation calculates the gradients of the loss or error function of the network. These 

gradients are utilised to update the parameters of the network to reduce the error in predictions. In convolutional 

neural networks, the input image is first transformed into a matrix format, which is utilised as input for the 

network. The transformation corresponds to the type of image representation being used which is the binary 

notation input illustrated in figure 2. The input model combines 0s and 1s, indicating raw data that can be 

transformed at various levels. Thus, the input image is converted into a three-dimensional array, whereby the first, 

second, and third matrix hold different channels. In some implementations, a three-dimensional array could also 

be fed as input to the network and processed in the relevant layers.  

 

The convolutional layer accepts the input and performs the convolution operation. This layer consists of three 

types of matrices. The input, the kernel, and the feature map. The kernel, sometimes called the filter or feature 

detector, is a matrix of smaller dimensions than the input. The values of the kernel are called weights. These 

weights are used to extract features from the image, such as edges or textures [21], [25].  Convolutional neural 

networks use both predefined and learned kernels. Predefined or hand-crafted kernels are used to detect edges, 

textures, and corners. These include vertical and horizontal edge detectors as well as scharr and Sobel filters which 

is very important when it comes to research of this nature in terms of the potato leaves and its associated features.  

A vertical edge filter is used to detect vertical edges in the image. This is achieved by searching for abrupt changes 

in intensity along the vertical direction, which indicates an edge. On the other hand, horizontal edge filters search 

for abrupt changes in the horizontal direction and are used to detect horizontal edges. The Sobel filter is an edge 

detection filter, which is based on the gradient of the image intensity. It can detect horizontal and vertical edges, 

offering more accuracy in detecting diagonal edges. The values and effectiveness of these filters are based on 

research and so are pre-defined or hand-crafted [25]. Thus, the values of the filters generally do not change during 

training. In the network, on -predefined filters are also used to detect features from the image rather, they are 

initialised to certain values. During training, these values will be changed in the convolutional layer until the 

network begins to effectively and consistently identify an image, thus, the filters are called learned filters. CNNs 

regularly utilise a combination of both predefined and learned kernels.  

 

2.2 Convolution vs Cross-correlation approach 
The convolutional layer takes the input matrix and applies the cross-correlation operation to it.  Cross-correlation 

involves overlapping the kernel on top of the input image and applying the dot product of the two matrices [22], 

[26], [27]. The kernel is then shifted across the input, repeating the same procedure and producing the feature 

map. Convolution is a mathematical operation in which the cross-correlation is performed, with the kernel being 

shifted by 180 degrees. This can be associated with a 7 × 7 input and a 3 × 3 filter scenarios. The kernel will be 

placed on top of the input at the top left corner to perform cross-correlation, and element-wise multiplication will 

be applied. Then, the kernel will be shifted one step to the right, and the element wise multiplication is performed. 

Once the filter slides in such a way that its rightmost column is over the right most column of the input, the cross-

correlation operation is performed. Then, the kernel shifts one row down and is placed in the left most column of 

the input. This operation is repeated until the feature map/convoluted feature is obtained. For emphasis, the case 

of convolution is connected to the kernel rotated by 180 degrees, and then the cross-correlation operation is 

performed.  In addition, multiple filters based on a resultant number of matrices when applied to a cross-correlation 

input of n × n with a filter of  f × f dimensions; our output feature map will be of the dimensions: 

 

 [𝑛 − f + 1 ]   ×  [𝑛 − f + 1 ]      (1) 

 

Additionally, Padding and strides concepts are applied in CNN to address the exact dimensions scenario with the 

help of equation (2): 

𝑝 =
𝑓−1

2
       (2) 
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Where p is the padding required, and f is the filter size. Stride refers to the step size that shifts the kernel vertically 

and horizontally across the input image. With padding and strides, an input of n × n being cross correlated with a 

filter of f × f, will produce a feature map having the standard dimensions given by equation (3).  

 

[
n+2p−f

s
+ 1]  × [

n+2p−f

s
+ 1]      (3) 

 

Where n is the input size, p is the padding, f is the filter size, and s is the stride. In the case of RGB images, an 

input of dimensions: 𝑛 × 𝑛 ×  𝑛𝑐 bring cross correlated with a filter of dimensions: 𝑓 × 𝑓 × 𝑛𝑐 will produce a 

feature map of the following dimensions, where  𝑛𝑐
′ is the number of filters.  

 
[𝑛 − f + 1 ]   ×  [𝑛 − f + 1 ]  ×   𝑛𝑐

′    (4) 

 

 

 

These concepts are all important to achieving target results and can be established using the following 

mathematical intuition of cross correlation and convolution presented in equations (5) to (12). 

 

Cross-correlation can be represented by the equation: 

 

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑  𝑚 ∑  𝑛 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚, 𝑛) (5) 

 

While convolution takes the equation: 

 

𝑆(𝑖, 𝑗) = (𝐾 ∗ 𝐼)(𝑖, 𝑗) = ∑  𝑚 ∑  𝑛 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛) (6)  

 

Let’s consider the cross-correlation equation: 

 

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑  𝑚 ∑  𝑛 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚, 𝑛) (7) 

 

Here: 

S is the cross-correlation operation of the functions K (kernel matrix) and I (input matrix). The double 

summation is presented because of the 2D signal cross-correlation. And the symbols m and n represent the 

summation indices across the x and y axes, respectively.  

 

Therefore, if we let m = x and n = y, the equation can be written as: 

 

𝑆(𝑖, 𝑗) = (𝐾 ∗ 𝐼)(𝑖, 𝑗) = ∑  𝑥 ∑  𝑦 𝐼(𝑖 + 𝑥, 𝑗 + 𝑦)𝐾(𝑥, 𝑦) (8) 

 

Considering the input and kernel below: 

 

𝐼 =

[
 
 
 
 
0    1    0    1    0
1    1    0    1    1
0    0    0    1    1
1    1    0    0    0
0    1    0    1    1]

 
 
 
 

                              𝐾 =

[
 
 
 
 

1

16

1

8

1

16
1

8

1

4

1

8
1

16

1

8

1

16]
 
 
 
 

   (9) 

 

thus, the restriction of the range of the summations to x = -1 to x = 1 and y = -1 to y = 1, if the kernel is a 3 x 3 

matrix. 

 

𝑆(𝑖, 𝑗) = (𝐾 ∗ 𝐼)(𝑖, 𝑗) = ∑  1
𝑥=−1 ∑  1

𝑦=−1 𝐼(𝑖 + 𝑥, 𝑗 + 𝑦)𝐾(𝑥, 𝑦)  (10) 

 

Taking the coordinates of the input matrix, 0 is assumed as the center at the index (0,0). Let I = 0 and j = 0 in the 

previous equation, this results in equation (11): 
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𝑆(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑥, 𝑦)𝐾(𝑥, 𝑦)1
𝑦=−1

1
𝑥=−1    (11) 

 

The above equation is simply the product of the two matrices, as exemplified earlier. Here at (0,0) the output is 

presented in equation (12): 

 

𝑆(𝑖, 𝑗) = 𝑆(0,0) = (𝐾 ∗ 𝐼)(0,0) = ∑

[
 
 
 
 1

1

16
0

1

8
1

1

16

0
1

8
0

1

4
1

1

8

1
1

16
0

1

8
0

1

16]
 
 
 
 

  (12) 

                                   =
5

16
 

 

Therefore, to compute the other outputs, the i and j values will be changed to change the position of the kernel. 

The same element-wise multiplication will be performed. This is the operation which was described in section 

2.1. However, the convolution equation (13) can be applied. 

 

𝑆(𝑖, 𝑗) = (𝐾 ∗ 𝐼)(𝑖, 𝑗) = ∑  𝑚 ∑  𝑛 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛)  (13) 

 

The only difference is the negative notation. Therefore, the operation will involve the kernel being rotated 180 

degrees, and the cross-correlation operation will be performed as discussed earlier. The pooling layer is used to 

reduce the size of the matrices, accelerate the computations, and make feature detection more robust. There are 

two types of pooling, maximum pooling, and average pooling [28], although max pooling is mostly utilised. 

Maximum pooling returns the maximum value from a section of the image covered by the filter while average 

pooling returns the average of the values from that section. The convolutional and pooling layers introduces 

invariance to the input image. This can be translational, rotational, or matrix scaling. Therefore, a CNN can have 

the ability to classify an image even if it has been transformed. So, there will be no need to train the network again 

for classification involving a transformed image. 

 

2.3 Non-Linear Activation Functions and Bias 
To effectively classify the potato leaves, it is important to emphasize the aspect of non-linear activation functions 

as a critical component of convolutional neural networks (CNNs). Real-world data, often have non-linear 

relationships between input features and output classes. Since this research considers drone use to capture images 

as a form of implementing the architecture in Figure 1 in the context of image classification, the relationship 

between the pixel values of an image and its class is highly non-linear. This is because the values of the pixels are 

not always the same for a given pixel to correspond to a particular class [29], [30], [31]. Non-linearity enables the 

classifier to classify the image accurately despite these variations in pixel values.  

 

Gradient descent with momentum is an optimization algorithm commonly used to train neural networks, and some 

of the features are considered during the data analysis of this research approach. It is an extension of the standard 

gradient descent algorithm that adds a momentum term to the parameter update rule. The momentum algorithm 

contains a quantity known as accumulation and is denoted by 𝑣𝑡.This is obtained using the gradient of the current 

loss, the learning rate, and the preceding value of the accumulation as observed below: 

 

𝑣𝑡 = 𝛼𝑣𝑡−1 − 𝜂∇𝐽(𝜃)    (14)  

  

The preceding value of accumulation,𝑣𝑡−1 is scaled by a constant α, which is referred to as momentum. The 

momentum is set to a value between 0 and 1 and represents the level at which the preceding step influences the 

current step. It is usually set to a value of 0.9. Once the accumulation is calculated, the parameters are updated 

using equation (15). 

 

𝜃𝑡 = 𝜃𝑡−1 + 𝑣𝑡     (15) 

 



 
 

JDFEWS 5 (1): 45-68, 2024 

ISSN 2709-4529 

 

Adebisi, et al., 2024                                         JDFEWS 5(1), 2024, 45-68 

 

Accumulation affects the rate of convergence in that if the minimum is approached quickly, then 𝛼𝑣𝑡−1 will be 

significant, and the minimum will be reached even faster. If the optimizer rests between two values, then 𝛼𝑣𝑡−1 

will minimize the number of times the parameters are updated. Further simplification of equation (15) led to the 

Nesterov Accelerated Gradient descent algorithm (NAG), which alters the momentum algorithm by updating the 

parameters before the loss is calculated as given by equation (16), which has a higher convergence rate compared 

to the gradient descent algorithm. 

 
𝑣𝑡 = 𝛼𝑣𝑡−1 − ∇𝐽(𝜃 − 𝛼𝑣𝑡−1)

𝜃𝑡 = 𝜃𝑡−1 + 𝑣𝑗
   (16) 

 

The same learning rate is applied to each parameter being trained in both the gradient descent and momentum 

algorithms. However, different parameters can converge to their minimum at different learning rates. The adaptive 

gradient (Adagrad) algorithm considers learning rate alters from parameter to parameter and step to step. The tth 

step for the ith parameter is represented as 𝑛𝑡,𝑖  while the algorithm calculates subgradients instead of gradients. 

This is a generalization of a gradient that is applicable to nondifferentiable functions. Therefore, Adagrad can be 

used to optimize both differentiable and nondifferentiable functions, as presented in this research. [32], [33] 

developed the first Adagrad algorithm. The equation for the learning rate of a given parameter is given by equation 

(17). 

 

𝜂𝑡,𝑖 =
𝜂

√𝐺𝑡,𝑖𝑖
     (17) 

 

In equation (17), 𝐺𝑡,𝑖𝑖  is the ith element of the diagonal of a matrix that is made by computing the product of the 

subgradient of the loss with itself. After the learning rates are calculated, the algorithm then updates the parameters 

as 𝜃𝑡,𝑖 = 𝜃𝑡−1,𝑖 − 𝜂𝑡,𝑖𝑔𝑡. Although learning rates always decrease in size as the training progresses, their values 

will reach zero at a point, which will stop the training and sometimes prompt the use of combinational techniques. 

Considering the various reviews of approaches and concepts in CNN.  

 

3.0 Methodology 
The samples used in this research consist of potato plant images with early blight and late blight diseases from the 

PlantVillage dataset, which serves as the study population. For the training and testing process, a random sampling 

procedure is used to divide the dataset into two separate sets: a training set and a testing set. This is done by 

randomly selecting a proportion of images for the training and testing set. The random sampling procedure is used 

due to the accuracy of each image in the dataset, which has an equal chance of being included in either the training 

or testing set. This helps to minimize any potential bias in the data and ensures that the resulting model is more 

representative of the population, as indicated in section 2. MATLAB is used to train and analyze the CNN 

algorithm on the Plantvillage dataset. Furthermore, Vitis High-level Synthesis (HLS) converts the CNN model 

from its MATLAB form into Hardware Descriptive Language (HDL).  The methodology is summarised in Figure 

3.  
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Figure 3: Research Methodology  

 

3.1 Data collection and analysis 

This research considered Five CNN models for training on the Potato Disease dataset, each representing distinct 

architectural configurations and hyperparameter settings. The training was conducted in MATLAB, leveraging its 

computational capabilities for machine learning tasks. Subsequently, a comparative analysis was performed to 

assess the models' performance using key performance metrics, including accuracy, precision, and recall. This 

comparison aimed to identify the most effective model for further deployment. The chosen model was then 

prepared for deployment on the Zynq UltraScale FPGA-SoC. To meet the hardware requirements, the model was 

converted to HDL with a detailed performance analysis of the synthesized model on the FPGA platform. This 

analysis, utilizing various performance metrics, aimed to evaluate the efficiency and feasibility of deploying the 

CNN algorithm on FPGA hardware. The stepwise process, an encompassing model training, selection, conversion 

to HDL, and FPGA synthesis analysis forms a comprehensive approach to implement and evaluate a CNN 

algorithm for potato disease classification on FPGA-based SoC. Performance metrics played a crucial role in 

assessing and comparing the models at different stages of this process.  PlantVillage is a publicly accessible dataset 

that contains over 20,639 images of images of crop leaves, including diseased ones. Each image is labeled as 

either healthy or diseased (figure 4).  
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Figure 4: Potato Leaves Dataset 

 

There are 15 directories representing classes of the images (figure 4), including those of pepper, potatoes, and 

tomatoes. In the case of the potatoes, the dataset includes three directories tallying to 2,150 images, of which 

1,000 images belong to the early blight and late blight categories, respectively while the remaining 150 images 

belong to the healthy class. The dataset is the most widely used dataset by researchers for crop disease 

classification applications. This is because it is publicly accessible-unlike many others- and the directories are 

large, making them robust and effective for the task. Hence, the Plantvillage dataset for potatoes was selected for 

this research. Five lightweight CNN models were trained to evaluate and select the most suitable model for potato 

disease classification and FPGA implementation. The chosen models were AlexNet, SqueezeNet, ShuffleNet, 

MobileNet and ResNet18. For the training and validation of each model, 80 % of the Plantvillage dataset was 

used for training, and 20% was used for validation. Furthermore, data augmentation was used to prevent 

overfitting, which included rotations, translations, shear, and scale. A diagrammatic comparison of the original 

and augmented images is presented in Figure 5.  

 

 

 
 

Figure 5: Original vs Augmented Image 

 

The models were trained using the following training parameters: Learning rate: 0.0001, Batch size:5, Epochs:6, 

and the Adam optimizer. Initially, the models had low validation accuracy, indicating overfitting or a high learning 

rate. Furthermore, data augmentation techniques were used to prevent overfitting. 
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4.0 Discussion of Results  
Following the successful acquisition of the dataset. The training was administered as indicated in Figures 6 – 8. 

This includes the training times and the five different CNN models tested. During the training sessions, 6 epochs 

were completed successfully with 344 iterations of epoch. Training results indicated that the losses were kept at 

the barest minimum as shown in figures 5 and 6. Results presented also affirm the literature facts that the better 

the performance of the hardware, the faster the results are generated during the training session. The plot of time 

taken vs. CNN models presented in Figure 8 indicated the minimum time taken by squeeze net is 33 minutes, 

while other models took longer to the tune of even over an hour. This result is based on the specification of the 

hardware used for training the model. The results of the MATLAB simulation vice a vis the FPGA indicate a 

positive disease detection with an accuracy of over 90%. Details of the simulation are presented in Figures 9-16. 
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Figure 6: MobileNet training initial training interface 

 

 
 

Figure 7: MobileNet training progress after adjustments 

Figure 8 shows the training times of the five respective CNN models. Since the CNN model was trained on a core 

i5 CPU + 3GB GPU, the models took on average, more than an hour to train. These findings support the literature 

stating that CPU platforms are inefficient for CNNs. 
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Figure 8: Training times of the CNN models 

Following successful training, the models were validated and evaluated using multiple performance metrics as 

well as ShuffleNet computational requirements (Table 1 and Table 2), including precision, F1-score, recall 

sensitivity, and specificity. Moreover, the hardware requirements were evaluated using metrics such as number 

MACs, arithmetic intensity, and FLOPs. Figure 9 shows various statuses and times in a confusion matrix 

illustration. The hardware requirement that produces this result and its associated performance metrics are shown 

in Figure 9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: ShuffleNet Confusion matrix 

 

Table 1: ShuffleNet performance metrics 

 

 

 

 

 

 

 
Precision Recall F1-Score Sensitivity Specificity 

Early Blight 1 1 1 1 1 

Healthy 0.90909 1 0.95238 1 0.9925 

Late Blight 1 0.985 0.99244 0.985 1 
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Table 2: ShuffleNet computational requirements 

 

 

It can be deduced that ShuffleNet achieves a very high performance since all the performance metrics (i.e. 

precision to specificity) are all close to 1. However, considering similar computational requirements, the 

sensitivity of healthy and late blight diseases in the potato is very close, indicating accuracy in prediction (Figure 

10 and Tables 3 and 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: ShuffleNet Confusion matrix 

 

Table 3: MobileNet performance metrics 

  Precision Recall F1-Score Sensitivity Specificity 

Early Blight 1 0.985 0.99244 0.985 1 

Healthy 1 1 1 1 1 

Late Blight 0.98522 1 0.99256 1 0.98696 

 

Table 4: MobileNet computational requirements 

Model Number Of 

Learnables 

Number Of 

Operations 

Parameter 

Memory (MB) 

Number Of 

MACs 

Arithmetic 

Intensity 

FLOPs Inference Time 

(ms) 

MobileNet 2210659 598996224 8.4329948 299498112 1343.2517 598996224 2.395984896 

 

MobileNet, similarly, achieves high accuracy as suggested by all the metrics being close to 1. While figure 11 and 

tables 5 and 6 depict the corresponding performance matrix. 

 

Model Number Of 

Learnables 

Number Of 

Operations 

Parameter 

Memory 

(MB) 

Number Of 

MACs 

Arithmetic 

Intensity 

FLOPs Inference 

Time (ms) 

ShuffleNet 836515 248244320 3.1910515 124122160 870.63658 248244320 0.99297728 
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Figure 11 : ResNet18 Confusion matrix 

 

 

Table 5: ResNet18 performance metrics 

  Precision Recall F1-Score Sensitivity Specificity 

Early Blight 0.97087 1 0.98522 1 0.9738 

Healthy 0.96774 1 0.98361 1 0.91746 

Late Blight 1 0.965 0.98219 0.965 1 

 

 

Table 6: ResNet18 computational requirements 

Model Number Of 

Learnables 

Number Of 

Operations 

Parameter 

Memory (MB) 

Number Of 

MACs 

Arithmetic 

Intensity 

FLOPs Inference 

Time (ms) 

ResNet18 11173251 3.627E+09 42.62257 1813562880 3436.67214 3627125760 14.50850304 

 

ResNet18 achieves high accuracy, as suggested by all the metrics being close to 1. 

 

The confusion matrix for AlexNet is presented in Figure 12 alongside its corresponding values in Tables 7 and 8.  
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Figure 12: AlexNet Confusion matrix  

 

Table 7: AlexNet performance metrics 

 

 

 

Table 8: AlexNet computational requirements 

 

 

 

 

The confusion matrix for SqueezeNet is presented in Figure 13 alongside its corresponding values in Tables 9 and 

10.  

 

  Precision Recall F1-Score Sensitivity Specificity 

Early Blight 0.99 0.99 0.99 0.99 0.99127 

Healthy 0.96774 1 0.98361 1 0.99747 

Late Blight 0.98995 0.985 0.98747 0.985 0.9913 

Model Number Of 

Learnables 

Number Of 

Operations 

Parameter 

Memory (MB) 

Number Of 

MACs 

Arithmetic 

Intensity 

FLOPs Inference 

Time (ms) 

AlexNet 56880417 1.441E+09 216.98157 720323006 1143.00487 1440646012 5.762584048 
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Figure 13: SqueezeNet confusion matrix 

 

Table 9: SqueezeNet performance metrics 

 

 

 

 

Table 10: SqueezeNet computational requirements 

 

SqueezeNet, similarly, achieves high accuracy as suggested by all the metrics being close to 1 

In a comparative analysis of the trained models, as indicated in figures 8 – 12. The models were compared based 

on their accuracy metrics and computational requirements, which are presented in Tables 1-10. Although each 

model shows an accuracy of close to 100%, MobileNet and ShuffleNet are the best in detecting the potato disease 

status using the leaves presented by the dataset. Accuracy and hardware requirements are analysed based on 

Figures 14 and 15. 

  Precision Recall F1-Score Sensitivity Specificity 

Early Blight 0.9434 1 0.97087 1 0.94667 

Healthy 0.90323 0.93333 0.91803 0.93333 0.99227 

Late Blight 0.9893 0.925 0.95607 0.925 0.9913 

Model Number Of 

Learnables 

Number Of 

Operations 

Parameter 

Memory 

(MB) 

Number 

Of MACs 

Arithmetic 

Intensity 

FLOPs Inference 

Time (ms) 

SqueezeNet 1823499 776671040 6.9560966 388335520 1709.30075 776671040 3.10668416 
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Figure 14: Accuracy comparison of trained models 

 
Figure 15: Hardware requirement comparison of trained models 

 

The ShuffleNet model was selected based on its training requirement, which is the least in size among the five 

models, as presented in Figure 15. This is suitable for embedded devices with the highest validation accuracy 

(99.3%), as shown in Figure 16. Other parameters, such as the lowest inference time (0.992ms), make it suitable 

for real-time applications such as precision agriculture. In addition, it requires the lowest number of operations. 

This is regarded as lightweight and ideal for FPGA deployment as the resources are limited. It is observed that 

ShuffleNet model quantization conserves the hardware resources of the FPGA, and the CNN model was 

quantized. The quantization technique is an optimisation technique meant to reduce the size of a CNN model, 
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making it suitable for FPGA implementation. The model parameters (i.e., weights and biases) were converted 

from floating point (16-bit) to fixed point (8-bit) using MATLAB. 

 

The Effect of Quantization and quantization resulted in a reduction in classification accuracy. However, the 

resultant accuracy is still adequate for the application at 98.8%, as presented in Figure 16. However, it is observed 

that the model size did not reduce as expected; this is likely due to the lack of pruning, which is the process of 

removing certain layers in the model to reduce the model size. 

 

 
 

Figure 16: Effect of Quantization 

 

The FPGA selection was successfully connected to the programming module of the simulation over SSH using 

ethernet, as shown in Figure 17. 
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Figure 17:  Ethernet connection with FPGA 

In addition, the creation of a block design in Vivado HLS tool to implement the CNN using MATLAB as shown 

in figure 18: 

 

Figure 18: FPGA block design in Vivado HLS 

 

Subsequently, Vitis HLS was used to convert the trained ShuffleNet CNN model into HDL. The HDL code was 

then synthesised, and the obtained resource utilization report is presented in Figure 19. 
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Figure 19: Performance and FPGA resource estimates 

 

It can be observed from the performance evaluation result that the CNN model consumed a little percentage of 

the FPGAs hardware resources: LUTs (10%), FF (4%), BlackRAMS (237%), and DSPs (8%); hence the CNN 

model was sufficiently optimised for the FPGA. Furthermore, a latency of 1.12ns is much faster than the value 

achieved in the software (MATLAB) of 0.992ms.  In this study, five pre-trained CNN models were trained on the 

Plantvillage dataset on CPU+3GB GPU, using the transfer learning technique. It was observed that the training 

times were quite long (more than an hour on average), since the platform used was a CPU. All the CNN models 

achieved a high validation accuracy of more than 90%. Their performance metrics (sensitivity, recall, specificity, 

and F1-score) supported this performance; all were greater than 1. 

Furthermore, a comparison of the CNN models showed that the ShuffleNet model was the best for FPGA-based 

SoC implementation because of its best performance metrics and the lowest hardware requirement. It achieved 

the highest validation accuracy and lowest inference time. The ShuffleNet model was then converted to HDL 

using Vitis HLS, and its synthesis report showed low inference time and low FPGA resource utilisation. This 

shows that the FPGA was more efficient than the CPU platform for CNN computation. Overall, the study 

compares multiple CNN models in MATLAB and selects the most suitable model for FPGA implementation 

based on performance metrics. This is followed by optimizing the algorithm using the quantization technique. 

Subsequently, the model is converted to HDL to evaluate the CNN model for an SoC platform, which has not 

been considered in previous studies for plant disease detection.   

 

 

Hardware Performance Metrics: Timing Performance 

Given that a 100 Mhz clock for the FPGA was selected, this implies that the timing limit is 10ns.The following 

timing metrics were obtained: 

1. Worst Negative Slack (WNS) :7.161 ns 

2. Worst Hold Slack (WHS): 0.019 ns 

3. Worst Pulse Width Slack (WPWS): 3.500 ns 

 

 

 
Figure 20: Summary of Timing Performance 

 

Since all the values are below 10ns.This indicates that all the timing constraints are met.  
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Power Consumption 

The power consumption obtained for the design is 3.333 W, of which 79% of the power is dynamic and 21% is 

static. High dynamic power correlates to the intensive requirements of CNN inference, particularly from MAC 

operations. Optimizing dynamic power usage can further enhance power efficiency. Nonetheless, a power 

consumption of 3.333W indicates that the FPGA is power efficient in inferencing the CNN model, aligning with 

the literature findings. 

 

 
Figure 21: Power Consumption 

 

 

 

Resource Utilisation 

Table 11 shows the resource utilisation obtained from Vivado. 

 

Table 11: Resource Utilisation 

Resource  Utilization Available Utilization (%) 

LUT 470 230400 0.2 

LUTRAM 68 101760 0.07 

FF 597 460800 0.13 

BUFG 1 544 0.18 
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Figure 22: Percentage Resource Utilisation 

 

LUT (Look-Up Table): A 0.2% LUT utilisation indicates that the design is not heavily reliant on combinational 

logic, which is typical for optimized FPGA designs where efficiency and minimizing resource usage are 

prioritized. 

LUTRAM (Look-Up Table RAM): Similarly, a 0.07% LUTRAM ultilisation suggests efficient use of on-chip 

memory resources. This could be due to the effective design of data storage and handling within the CNN model. 

FF (Flip-Flop): A 0.13 % utilization suggests an efficient sequential logic design. This is beneficial for 

maintaining low power consumption and high performance. 

BUFG (Global Clock Buffer): A 0.18% BUFG indicates that the design does not require any global clock 

resources, which can be advantageous for minimizing clock distribution complexity and power consumption. 

 

The resource utilization for the FPGA implementation of the CNN model (Table. 10) is very low across all key 

resources (LUTs, LUTRAMs, FFs, and BUFGs). This indicates a highly efficient design that conserves FPGA 

resources while maintaining the necessary performance for CNN inference. Such efficiency is crucial for 

scalability and for deploying multiple instances or additional functionality within the same FPGA. The low 

resource usage, combined with the power efficiency discussed earlier, underscores the effectiveness of the FPGA 

implementation for CNN inference. 

 

5.0 Conclusions and Future Work 
In conclusion, the study findings illustrated the effectiveness of CNNs for potato disease identification, with all 

the selected CNN models reaching a validation accuracy of over 90%. The ShuffleNet model was the most suitable 

for FPGA deployment since it achieved the highest validation accuracy and the lowest inference time, attributed 

to its efficient architecture.  The implementation of the CNN on the Xylinx UltraScale+MPSoC ZCUQ04 board 

demonstrated significant efficiency in power consumption and resource utilization. The total power consumption 

was 3.333 W, with 79% being dynamic power, reflecting the computational demands of CNN inference. Despite 

this, the FPGA's power efficiency is consistent with existing literature, confirming its viability for real-time CNN 

tasks. 

Furthermore, the design fulfilled all timing constraints with positive slack values (WNS of 7.161 ns and WHS of 

0.019 ns), indicating reliable operation at the intended clock frequency of 100 MHz. This ensures that the FPGA 

can handle real-time inference tasks efficiently. Resource utilization was low, with only 0.20% of LUTs, 0.07% 

of LUTRAMs, 0.13% of flip-flops, and 0.18% of BUFGs used, indicating an optimized design that maximizes 

FPGA capabilities while conserving resources.   The results highlight the FPGA's potential as an efficient, high-

performance alternative to CPU and GPU implementations, providing a viable solution for real-time potato 

disease identification on platforms such as UAVs.  The use of FPGAs, moreover, provides a means for real-time 

disease identification. Therefore, the research contributes to the existing knowledge on implementations of CNN 

for potato disease classification and FPGA acceleration for real-time detection.  
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