

JDFEWS 5 (1): 45-68, 2024

ISSN 2709-4529

 Adebisi, et al., 2024 JDFEWS 5(1), 2024, 45-68

Deep Learning Algorithm Analysis of Potato Disease

Classification for

System on Chip Implementation

John A. ADEBISI

Department of Electrical and Computer Engineering, University of Namibia, Namibia.

adebisi_tunji@yahoo.com

 Sesham SRINU

Department of Electrical and Computer Engineering, University of Namibia, Namibia.

ssesham@unam.na

Varqa k. MITONGA

Department of Electrical and Computer Engineering, University of Namibia, Namibia.

varqamitonga@gmail.com

Corresponding Author: adebisi_tunji@yahoo.com

Abstract - Recently, every aspect of human existence has been affected by modern

technologies, including agriculture. The broad range of crops has witnessed setbacks

in different capacities due to climate change, leading to diseases and infections and

negatively impacting nutrition. Plant diseases significantly threaten agricultural

productivity, leading to substantial economic losses and food insecurity. Traditional

methods of disease identification, such as visual inspection and laboratory testing, are

time-consuming and require expert knowledge. This study aims to address this

problem by leveraging Convolutional Neural Networks (CNNs) and FPGA technology

for real-time potato disease identification. Five CNN models were trained and

evaluated on the Plant Village dataset, achieving accuracies above 90%. ShuffleNet

was identified as the most suitable for FPGA deployment, combining high accuracy

with low inference time due to its efficient architecture. The selected CNN was

implemented on the Xilinx UltraScale+MPSoC ZCU104 board, demonstrating

significant power efficiency with a total consumption of 3.333 W, of which 79% was

dynamic power. The design met all timing constraints, ensuring reliable operation at a

100 MHz clock frequency, and exhibited low resource utilization with only 0.20% of

LUTs, 0.07% of LUTRAMs, 0.13% of flip-flops, and 0.18% of BUFGs used. These

results highlight the FPGA's potential as a power-efficient and high-performance

alternative to CPU and GPU implementations for real-time CNN inference. Future

work includes developing a test bench for detailed performance measurement,

optimizing dynamic power usage, and conducting comparative analyses with other

platforms. Additionally, expanding the dataset to include more variability and

validating the system in real-world applications will further enhance its effectiveness.

This research contributes to the goals of Agriculture 4.0 by providing a viable solution

for real-time plant disease identification, ultimately aiming at improving agricultural

productivity and food security.

Keywords: Convolutional Neural Networks (CNN), Potato Diseases, High-level

Synthesis, System on Chip, Algorithm.

Received: 04 May 2024

Review: 27 May 2024

Accepted: 26 June 2024

Published: 30 June 2024

mailto:adebisi_tunji@yahoo.com
mailto:ssesham@unam.na
mailto:varqamitonga@gmail.com
mailto:adebisi_tunji@yahoo.com

JDFEWS 5 (1): 45-68, 2024

ISSN 2709-4529

Adebisi, et al., 2024 JDFEWS 5(1), 2024, 45-68

1.0 Background
Potatoes are a globally important crop and contribute significantly to the economies of many countries [1], [2],

[3]. In Africa, especially Namibia, potatoes are one of the most consumed horticultural products, accounting for

39% of the total horticultural fresh produce consumption [4]. However, potato diseases such as early and late

blight threaten potato production, leading to substantial yield losses (Kanter et al., 2015). Early detection and

accurate classification of these diseases are essential for effective disease management and control. Traditional

methods, such as visual inspection and expert laboratory testing, are widely utilised. However, such methods are

costly and time-consuming [5], [6]. Convolutional Neural Networks (CNNs) have shown promising results in

potato disease detection and classification [7]. Thereby, emerging as an effective tool for plant disease

classification. CNNs are, however, computationally demanding, which prevents effective real-time detection [8],

moreover most of the existing research made significant efforts on software implementation and other platforms

such as CPUs and GPUs, which have high power consumption [8], [9], [10]. Field Programmable Gate Arrays

(FPGAs) provide a viable solution to these challenges, providing parallel computing and havingow power

consumption [9]. Furthermore, System on Chips (SoCs)-which combine the merits of an FPGA and the

computational capability of a CPU, have shown efficiency in the implementation of CNNs, compared to other

platforms [8].

This study further proposes using an agricultural drone, as illustrated in Figure 1, for precision agriculture to aid

images and data collection from crop fields. This framework will be useful for the classification of plant diseases

based on the drone images and for producing the required outputs. However, an FPGA could be utilised to

accelerate the operations of CNN. The novelty of this work is to investigate the hardware-based analysis of a CNN

for early detection and classification of potato diseases and the potential of using FPGAs for real-time detection

to prevent the spread of potato diseases. Training and analysis of a CNN algorithm for early detection and

classification of potato diseases- specifically early blight and late blight

Figure 1: Drone-oriented structure for potato disease detection

2. Review of literature
Related studies regarding the application of CNNs for plant disease detection and its FPGA/SoC implementation

were considered in this section. A strategic analysis of the CNN algorithm with respect to layers such as

convolutional, pooling, and SoftMax with an overview of metrics utilised to evaluate related performance such as

precision, recall, and F1-score was considered. As a deep learning algorithm, Convolutional Neural networks have

gained widespread adoption in plant disease classification [11]. It has addressed some of the problems associated

JDFEWS 5 (1): 45-68, 2024

ISSN 2709-4529

Adebisi, et al., 2024 JDFEWS 5(1), 2024, 45-68

with traditional classification methods, such as visual inspection or laboratory testing by experts, which are time-

consuming and costlier. Other studies have focused on applying CNNs to classify potato diseases [7], [12]. In a

study by [13] a CNN algorithm was developed to detect the healthy status of potato leaves. The authors achieved

an accuracy of 80%, and their framework was implemented using Python and the Google GPU. Moreover, using

MATLAB, [14] compared various deep learning algorithms for potato disease classification. The authors used

five classes: healthy, black scurf, common scab, black leg, and pink rot. The detection was based on the surface

defects of the potatoes, and the authors reported accurate results. [15] highlighted that CNNs have high

computational requirements, and implementation on platforms such as CPUs and GPUs introduce the drawbacks

of high-power consumption and low computational efficiency. However, the authors later ascertained that FPGAs

are a viable solution to some challenges as they embody the attributes of parallel computing and energy efficiency

attributes. Despite these benefits, there is a paucity of hardware implementation of CNN for plant disease detection

on FPGA platforms.

[16], implemented a CNN algorithm to identify the diseases of four types of common crops based on their leaves.

These crops are beans, rice, coffee, and apple. The author’s implementation was carried out on five platforms:

FPGA, CPU1, CPU2, CPU2 + GPU and Raspberry Pi. The FPGA-SoC platform was the ZYNQ z7-Lite 7020.In

comparison to the other platforms the FPGA recorded the highest accuracy (95.71%), highest speed (0.071s), and

lowest power consumption. [17], [18], [19] implemented a CNN algorithm for the identification of three crops:

pepper, potato, and tomato. The platform used is PYNQ-Z1 SoC, and GPU boosted CPU was used to train the

algorithm. The authors compared the performance of the Zynq-SoC to that of other papers in terms of power

consumption, computational roof, computational requirements, and bandwidth roof. The research reported some

shortcomings in applying the same to potatoes based on their tested parameters. Most of the reviewed literatures

demonstrated the potential for using FPGA-SoCs for real-time potato disease detection, however the scope and

focus do not apply to the peculiarity of potatoes based on the findings of this research rather other generality of

grains plant diseases. There is paucity in analysing a FPGA-SoC implementation of a CNN for potato disease

detection, hence a gap in the literature. The present study aims to fill this gap by proposing a new architectural

framework for implementing a CNN algorithm on an FPGA-based SoC to classify early blight and late blight

diseases in potato crops.

2.1 CNN Architecture
The architecture of a CNN includes layers which learn the features of image datasets[20], [21], [22]. The

convolutional layer is the first layer, carrying out the convolution operation on the input. From this procedure,

features from the input data are extracted. The next layer is the pooling layer, which is meant to reduce the size

of the resultant matrix from the convolutional layer. It applies either max pooling or average pooling operation.

The input then applies non-linearity to the algorithm through an activation function. This allows the network to

learn complex patterns in the data.

Furthermore, the bias term is added to the output of the activation function, thereby improving the accuracy of the

predictions. The fully connected (FC) layer is the last layer of the algorithm. It takes the output from the preceding

layers and gives out a prediction of what the input data. This layer is a type of artificial neural network, which has

interconnected neurons. Based on a parameter called the weight, certain neurons are activated based on the

features extracted as indicated in Figure 2. While, the SoftMax layer produces a probability distribution, indicating

the probability of the prediction.

Figure 2: Architecture of a CNN algorithm

JDFEWS 5 (1): 45-68, 2024

ISSN 2709-4529

Adebisi, et al., 2024 JDFEWS 5(1), 2024, 45-68

It is important to state that in addition to the layers that make up a CNN, there are other building blocks that are

essential to the training process [15], [23]. These include forward propagation and backpropagation. The fforward

propagation refers to the process of passing an input through the layers of the network to produce an output. The

input is passed through the network to produce a prediction during this process. Backpropagation, on the other

hand, is the process of computing the gradients of the loss function with respect to the parameters of the network.

These gradients are then used to update the parameters of the network, such as the weights and biases in the

convolutional and fully connected layers [20], [24].

On the other hand, backpropagation calculates the gradients of the loss or error function of the network. These

gradients are utilised to update the parameters of the network to reduce the error in predictions. In convolutional

neural networks, the input image is first transformed into a matrix format, which is utilised as input for the

network. The transformation corresponds to the type of image representation being used which is the binary

notation input illustrated in figure 2. The input model combines 0s and 1s, indicating raw data that can be

transformed at various levels. Thus, the input image is converted into a three-dimensional array, whereby the first,

second, and third matrix hold different channels. In some implementations, a three-dimensional array could also

be fed as input to the network and processed in the relevant layers.

The convolutional layer accepts the input and performs the convolution operation. This layer consists of three

types of matrices. The input, the kernel, and the feature map. The kernel, sometimes called the filter or feature

detector, is a matrix of smaller dimensions than the input. The values of the kernel are called weights. These

weights are used to extract features from the image, such as edges or textures [21], [25]. Convolutional neural

networks use both predefined and learned kernels. Predefined or hand-crafted kernels are used to detect edges,

textures, and corners. These include vertical and horizontal edge detectors as well as scharr and Sobel filters which

is very important when it comes to research of this nature in terms of the potato leaves and its associated features.

A vertical edge filter is used to detect vertical edges in the image. This is achieved by searching for abrupt changes

in intensity along the vertical direction, which indicates an edge. On the other hand, horizontal edge filters search

for abrupt changes in the horizontal direction and are used to detect horizontal edges. The Sobel filter is an edge

detection filter, which is based on the gradient of the image intensity. It can detect horizontal and vertical edges,

offering more accuracy in detecting diagonal edges. The values and effectiveness of these filters are based on

research and so are pre-defined or hand-crafted [25]. Thus, the values of the filters generally do not change during

training. In the network, on -predefined filters are also used to detect features from the image rather, they are

initialised to certain values. During training, these values will be changed in the convolutional layer until the

network begins to effectively and consistently identify an image, thus, the filters are called learned filters. CNNs

regularly utilise a combination of both predefined and learned kernels.

2.2 Convolution vs Cross-correlation approach
The convolutional layer takes the input matrix and applies the cross-correlation operation to it. Cross-correlation

involves overlapping the kernel on top of the input image and applying the dot product of the two matrices [22],

[26], [27]. The kernel is then shifted across the input, repeating the same procedure and producing the feature

map. Convolution is a mathematical operation in which the cross-correlation is performed, with the kernel being

shifted by 180 degrees. This can be associated with a 7 × 7 input and a 3 × 3 filter scenarios. The kernel will be

placed on top of the input at the top left corner to perform cross-correlation, and element-wise multiplication will

be applied. Then, the kernel will be shifted one step to the right, and the element wise multiplication is performed.

Once the filter slides in such a way that its rightmost column is over the right most column of the input, the cross-

correlation operation is performed. Then, the kernel shifts one row down and is placed in the left most column of

the input. This operation is repeated until the feature map/convoluted feature is obtained. For emphasis, the case

of convolution is connected to the kernel rotated by 180 degrees, and then the cross-correlation operation is

performed. In addition, multiple filters based on a resultant number of matrices when applied to a cross-correlation

input of n × n with a filter of f × f dimensions; our output feature map will be of the dimensions:

 [𝑛 − f + 1] × [𝑛 − f + 1] (1)

Additionally, Padding and strides concepts are applied in CNN to address the exact dimensions scenario with the

help of equation (2):

𝑝 =
𝑓−1

2
 (2)

JDFEWS 5 (1): 45-68, 2024

ISSN 2709-4529

Adebisi, et al., 2024 JDFEWS 5(1), 2024, 45-68

Where p is the padding required, and f is the filter size. Stride refers to the step size that shifts the kernel vertically

and horizontally across the input image. With padding and strides, an input of n × n being cross correlated with a

filter of f × f, will produce a feature map having the standard dimensions given by equation (3).

[
n+2p−f

s
+ 1] × [

n+2p−f

s
+ 1] (3)

Where n is the input size, p is the padding, f is the filter size, and s is the stride. In the case of RGB images, an

input of dimensions: 𝑛 × 𝑛 × 𝑛𝑐 bring cross correlated with a filter of dimensions: 𝑓 × 𝑓 × 𝑛𝑐 will produce a

feature map of the following dimensions, where 𝑛𝑐
′ is the number of filters.

[𝑛 − f + 1] × [𝑛 − f + 1] × 𝑛𝑐

′ (4)

These concepts are all important to achieving target results and can be established using the following

mathematical intuition of cross correlation and convolution presented in equations (5) to (12).

Cross-correlation can be represented by the equation:

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑  𝑚 ∑  𝑛 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚, 𝑛) (5)

While convolution takes the equation:

𝑆(𝑖, 𝑗) = (𝐾 ∗ 𝐼)(𝑖, 𝑗) = ∑  𝑚 ∑  𝑛 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛) (6)

Let’s consider the cross-correlation equation:

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑  𝑚 ∑  𝑛 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚, 𝑛) (7)

Here:

S is the cross-correlation operation of the functions K (kernel matrix) and I (input matrix). The double

summation is presented because of the 2D signal cross-correlation. And the symbols m and n represent the

summation indices across the x and y axes, respectively.

Therefore, if we let m = x and n = y, the equation can be written as:

𝑆(𝑖, 𝑗) = (𝐾 ∗ 𝐼)(𝑖, 𝑗) = ∑  𝑥 ∑  𝑦 𝐼(𝑖 + 𝑥, 𝑗 + 𝑦)𝐾(𝑥, 𝑦) (8)

Considering the input and kernel below:

𝐼 =

[

0 1 0 1 0
1 1 0 1 1
0 0 0 1 1
1 1 0 0 0
0 1 0 1 1]

 𝐾 =

[

1

16

1

8

1

16
1

8

1

4

1

8
1

16

1

8

1

16]

 (9)

thus, the restriction of the range of the summations to x = -1 to x = 1 and y = -1 to y = 1, if the kernel is a 3 x 3

matrix.

𝑆(𝑖, 𝑗) = (𝐾 ∗ 𝐼)(𝑖, 𝑗) = ∑  1
𝑥=−1 ∑  1

𝑦=−1 𝐼(𝑖 + 𝑥, 𝑗 + 𝑦)𝐾(𝑥, 𝑦) (10)

Taking the coordinates of the input matrix, 0 is assumed as the center at the index (0,0). Let I = 0 and j = 0 in the

previous equation, this results in equation (11):

JDFEWS 5 (1): 45-68, 2024

ISSN 2709-4529

Adebisi, et al., 2024 JDFEWS 5(1), 2024, 45-68

𝑆(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑥, 𝑦)𝐾(𝑥, 𝑦)1
𝑦=−1

1
𝑥=−1 (11)

The above equation is simply the product of the two matrices, as exemplified earlier. Here at (0,0) the output is

presented in equation (12):

𝑆(𝑖, 𝑗) = 𝑆(0,0) = (𝐾 ∗ 𝐼)(0,0) = ∑

[

 1

1

16
0

1

8
1

1

16

0
1

8
0

1

4
1

1

8

1
1

16
0

1

8
0

1

16]

 (12)

 =
5

16

Therefore, to compute the other outputs, the i and j values will be changed to change the position of the kernel.

The same element-wise multiplication will be performed. This is the operation which was described in section

2.1. However, the convolution equation (13) can be applied.

𝑆(𝑖, 𝑗) = (𝐾 ∗ 𝐼)(𝑖, 𝑗) = ∑  𝑚 ∑  𝑛 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛) (13)

The only difference is the negative notation. Therefore, the operation will involve the kernel being rotated 180

degrees, and the cross-correlation operation will be performed as discussed earlier. The pooling layer is used to

reduce the size of the matrices, accelerate the computations, and make feature detection more robust. There are

two types of pooling, maximum pooling, and average pooling [28], although max pooling is mostly utilised.

Maximum pooling returns the maximum value from a section of the image covered by the filter while average

pooling returns the average of the values from that section. The convolutional and pooling layers introduces

invariance to the input image. This can be translational, rotational, or matrix scaling. Therefore, a CNN can have

the ability to classify an image even if it has been transformed. So, there will be no need to train the network again

for classification involving a transformed image.

2.3 Non-Linear Activation Functions and Bias
To effectively classify the potato leaves, it is important to emphasize the aspect of non-linear activation functions

as a critical component of convolutional neural networks (CNNs). Real-world data, often have non-linear

relationships between input features and output classes. Since this research considers drone use to capture images

as a form of implementing the architecture in Figure 1 in the context of image classification, the relationship

between the pixel values of an image and its class is highly non-linear. This is because the values of the pixels are

not always the same for a given pixel to correspond to a particular class [29], [30], [31]. Non-linearity enables the

classifier to classify the image accurately despite these variations in pixel values.

Gradient descent with momentum is an optimization algorithm commonly used to train neural networks, and some

of the features are considered during the data analysis of this research approach. It is an extension of the standard

gradient descent algorithm that adds a momentum term to the parameter update rule. The momentum algorithm

contains a quantity known as accumulation and is denoted by 𝑣𝑡.This is obtained using the gradient of the current

loss, the learning rate, and the preceding value of the accumulation as observed below:

𝑣𝑡 = 𝛼𝑣𝑡−1 − 𝜂∇𝐽(𝜃) (14)

The preceding value of accumulation,𝑣𝑡−1 is scaled by a constant α, which is referred to as momentum. The

momentum is set to a value between 0 and 1 and represents the level at which the preceding step influences the

current step. It is usually set to a value of 0.9. Once the accumulation is calculated, the parameters are updated

using equation (15).

𝜃𝑡 = 𝜃𝑡−1 + 𝑣𝑡 (15)

JDFEWS 5 (1): 45-68, 2024

ISSN 2709-4529

Adebisi, et al., 2024 JDFEWS 5(1), 2024, 45-68

Accumulation affects the rate of convergence in that if the minimum is approached quickly, then 𝛼𝑣𝑡−1 will be

significant, and the minimum will be reached even faster. If the optimizer rests between two values, then 𝛼𝑣𝑡−1

will minimize the number of times the parameters are updated. Further simplification of equation (15) led to the

Nesterov Accelerated Gradient descent algorithm (NAG), which alters the momentum algorithm by updating the

parameters before the loss is calculated as given by equation (16), which has a higher convergence rate compared

to the gradient descent algorithm.

𝑣𝑡 = 𝛼𝑣𝑡−1 − ∇𝐽(𝜃 − 𝛼𝑣𝑡−1)

𝜃𝑡 = 𝜃𝑡−1 + 𝑣𝑗
 (16)

The same learning rate is applied to each parameter being trained in both the gradient descent and momentum

algorithms. However, different parameters can converge to their minimum at different learning rates. The adaptive

gradient (Adagrad) algorithm considers learning rate alters from parameter to parameter and step to step. The tth

step for the ith parameter is represented as 𝑛𝑡,𝑖 while the algorithm calculates subgradients instead of gradients.

This is a generalization of a gradient that is applicable to nondifferentiable functions. Therefore, Adagrad can be

used to optimize both differentiable and nondifferentiable functions, as presented in this research. [32], [33]

developed the first Adagrad algorithm. The equation for the learning rate of a given parameter is given by equation

(17).

𝜂𝑡,𝑖 =
𝜂

√𝐺𝑡,𝑖𝑖
 (17)

In equation (17), 𝐺𝑡,𝑖𝑖 is the ith element of the diagonal of a matrix that is made by computing the product of the

subgradient of the loss with itself. After the learning rates are calculated, the algorithm then updates the parameters

as 𝜃𝑡,𝑖 = 𝜃𝑡−1,𝑖 − 𝜂𝑡,𝑖𝑔𝑡. Although learning rates always decrease in size as the training progresses, their values

will reach zero at a point, which will stop the training and sometimes prompt the use of combinational techniques.

Considering the various reviews of approaches and concepts in CNN.

3.0 Methodology
The samples used in this research consist of potato plant images with early blight and late blight diseases from the

PlantVillage dataset, which serves as the study population. For the training and testing process, a random sampling

procedure is used to divide the dataset into two separate sets: a training set and a testing set. This is done by

randomly selecting a proportion of images for the training and testing set. The random sampling procedure is used

due to the accuracy of each image in the dataset, which has an equal chance of being included in either the training

or testing set. This helps to minimize any potential bias in the data and ensures that the resulting model is more

representative of the population, as indicated in section 2. MATLAB is used to train and analyze the CNN

algorithm on the Plantvillage dataset. Furthermore, Vitis High-level Synthesis (HLS) converts the CNN model

from its MATLAB form into Hardware Descriptive Language (HDL). The methodology is summarised in Figure

3.

JDFEWS 5 (1): 45-68, 2024

ISSN 2709-4529

Adebisi, et al., 2024 JDFEWS 5(1), 2024, 45-68

Figure 3: Research Methodology

3.1 Data collection and analysis

This research considered Five CNN models for training on the Potato Disease dataset, each representing distinct

architectural configurations and hyperparameter settings. The training was conducted in MATLAB, leveraging its

computational capabilities for machine learning tasks. Subsequently, a comparative analysis was performed to

assess the models' performance using key performance metrics, including accuracy, precision, and recall. This

comparison aimed to identify the most effective model for further deployment. The chosen model was then

prepared for deployment on the Zynq UltraScale FPGA-SoC. To meet the hardware requirements, the model was

converted to HDL with a detailed performance analysis of the synthesized model on the FPGA platform. This

analysis, utilizing various performance metrics, aimed to evaluate the efficiency and feasibility of deploying the

CNN algorithm on FPGA hardware. The stepwise process, an encompassing model training, selection, conversion

to HDL, and FPGA synthesis analysis forms a comprehensive approach to implement and evaluate a CNN

algorithm for potato disease classification on FPGA-based SoC. Performance metrics played a crucial role in

assessing and comparing the models at different stages of this process. PlantVillage is a publicly accessible dataset

that contains over 20,639 images of images of crop leaves, including diseased ones. Each image is labeled as

either healthy or diseased (figure 4).

JDFEWS 5 (1): 45-68, 2024

ISSN 2709-4529

Adebisi, et al., 2024 JDFEWS 5(1), 2024, 45-68

Figure 4: Potato Leaves Dataset

There are 15 directories representing classes of the images (figure 4), including those of pepper, potatoes, and

tomatoes. In the case of the potatoes, the dataset includes three directories tallying to 2,150 images, of which

1,000 images belong to the early blight and late blight categories, respectively while the remaining 150 images

belong to the healthy class. The dataset is the most widely used dataset by researchers for crop disease

classification applications. This is because it is publicly accessible-unlike many others- and the directories are

large, making them robust and effective for the task. Hence, the Plantvillage dataset for potatoes was selected for

this research. Five lightweight CNN models were trained to evaluate and select the most suitable model for potato

disease classification and FPGA implementation. The chosen models were AlexNet, SqueezeNet, ShuffleNet,

MobileNet and ResNet18. For the training and validation of each model, 80 % of the Plantvillage dataset was

used for training, and 20% was used for validation. Furthermore, data augmentation was used to prevent

overfitting, which included rotations, translations, shear, and scale. A diagrammatic comparison of the original

and augmented images is presented in Figure 5.

Figure 5: Original vs Augmented Image

The models were trained using the following training parameters: Learning rate: 0.0001, Batch size:5, Epochs:6,

and the Adam optimizer. Initially, the models had low validation accuracy, indicating overfitting or a high learning

rate. Furthermore, data augmentation techniques were used to prevent overfitting.

JDFEWS 5 (1): 45-68, 2024

ISSN 2709-4529

Adebisi, et al., 2024 JDFEWS 5(1), 2024, 45-68

4.0 Discussion of Results
Following the successful acquisition of the dataset. The training was administered as indicated in Figures 6 – 8.

This includes the training times and the five different CNN models tested. During the training sessions, 6 epochs

were completed successfully with 344 iterations of epoch. Training results indicated that the losses were kept at

the barest minimum as shown in figures 5 and 6. Results presented also affirm the literature facts that the better

the performance of the hardware, the faster the results are generated during the training session. The plot of time

taken vs. CNN models presented in Figure 8 indicated the minimum time taken by squeeze net is 33 minutes,

while other models took longer to the tune of even over an hour. This result is based on the specification of the

hardware used for training the model. The results of the MATLAB simulation vice a vis the FPGA indicate a

positive disease detection with an accuracy of over 90%. Details of the simulation are presented in Figures 9-16.

JDFEWS 5 (1): 45-68, 2024

ISSN 2709-4529

Adebisi, et al., 2024 JDFEWS 5(1), 2024, 45-68

Figure 6: MobileNet training initial training interface

Figure 7: MobileNet training progress after adjustments

Figure 8 shows the training times of the five respective CNN models. Since the CNN model was trained on a core

i5 CPU + 3GB GPU, the models took on average, more than an hour to train. These findings support the literature

stating that CPU platforms are inefficient for CNNs.

JDFEWS 5 (1): 45-68, 2024

ISSN 2709-4529

Adebisi, et al., 2024 JDFEWS 5(1), 2024, 45-68

Figure 8: Training times of the CNN models

Following successful training, the models were validated and evaluated using multiple performance metrics as

well as ShuffleNet computational requirements (Table 1 and Table 2), including precision, F1-score, recall

sensitivity, and specificity. Moreover, the hardware requirements were evaluated using metrics such as number

MACs, arithmetic intensity, and FLOPs. Figure 9 shows various statuses and times in a confusion matrix

illustration. The hardware requirement that produces this result and its associated performance metrics are shown

in Figure 9.

Figure 9: ShuffleNet Confusion matrix

Table 1: ShuffleNet performance metrics

Precision Recall F1-Score Sensitivity Specificity

Early Blight 1 1 1 1 1

Healthy 0.90909 1 0.95238 1 0.9925

Late Blight 1 0.985 0.99244 0.985 1

JDFEWS 5 (1): 45-68, 2024

ISSN 2709-4529

Adebisi, et al., 2024 JDFEWS 5(1), 2024, 45-68

Table 2: ShuffleNet computational requirements

It can be deduced that ShuffleNet achieves a very high performance since all the performance metrics (i.e.

precision to specificity) are all close to 1. However, considering similar computational requirements, the

sensitivity of healthy and late blight diseases in the potato is very close, indicating accuracy in prediction (Figure

10 and Tables 3 and 4).

Figure 10: ShuffleNet Confusion matrix

Table 3: MobileNet performance metrics

 Precision Recall F1-Score Sensitivity Specificity

Early Blight 1 0.985 0.99244 0.985 1

Healthy 1 1 1 1 1

Late Blight 0.98522 1 0.99256 1 0.98696

Table 4: MobileNet computational requirements

Model Number Of

Learnables

Number Of

Operations

Parameter

Memory (MB)

Number Of

MACs

Arithmetic

Intensity

FLOPs Inference Time

(ms)

MobileNet 2210659 598996224 8.4329948 299498112 1343.2517 598996224 2.395984896

MobileNet, similarly, achieves high accuracy as suggested by all the metrics being close to 1. While figure 11 and

tables 5 and 6 depict the corresponding performance matrix.

Model Number Of

Learnables

Number Of

Operations

Parameter

Memory

(MB)

Number Of

MACs

Arithmetic

Intensity

FLOPs Inference

Time (ms)

ShuffleNet 836515 248244320 3.1910515 124122160 870.63658 248244320 0.99297728

JDFEWS 5 (1): 45-68, 2024

ISSN 2709-4529

Adebisi, et al., 2024 JDFEWS 5(1), 2024, 45-68

Figure 11 : ResNet18 Confusion matrix

Table 5: ResNet18 performance metrics

 Precision Recall F1-Score Sensitivity Specificity

Early Blight 0.97087 1 0.98522 1 0.9738

Healthy 0.96774 1 0.98361 1 0.91746

Late Blight 1 0.965 0.98219 0.965 1

Table 6: ResNet18 computational requirements

Model Number Of

Learnables

Number Of

Operations

Parameter

Memory (MB)

Number Of

MACs

Arithmetic

Intensity

FLOPs Inference

Time (ms)

ResNet18 11173251 3.627E+09 42.62257 1813562880 3436.67214 3627125760 14.50850304

ResNet18 achieves high accuracy, as suggested by all the metrics being close to 1.

The confusion matrix for AlexNet is presented in Figure 12 alongside its corresponding values in Tables 7 and 8.

JDFEWS 5 (1): 45-68, 2024

ISSN 2709-4529

Adebisi, et al., 2024 JDFEWS 5(1), 2024, 45-68

Figure 12: AlexNet Confusion matrix

Table 7: AlexNet performance metrics

Table 8: AlexNet computational requirements

The confusion matrix for SqueezeNet is presented in Figure 13 alongside its corresponding values in Tables 9 and

10.

 Precision Recall F1-Score Sensitivity Specificity

Early Blight 0.99 0.99 0.99 0.99 0.99127

Healthy 0.96774 1 0.98361 1 0.99747

Late Blight 0.98995 0.985 0.98747 0.985 0.9913

Model Number Of

Learnables

Number Of

Operations

Parameter

Memory (MB)

Number Of

MACs

Arithmetic

Intensity

FLOPs Inference

Time (ms)

AlexNet 56880417 1.441E+09 216.98157 720323006 1143.00487 1440646012 5.762584048

JDFEWS 5 (1): 45-68, 2024

ISSN 2709-4529

Adebisi, et al., 2024 JDFEWS 5(1), 2024, 45-68

Figure 13: SqueezeNet confusion matrix

Table 9: SqueezeNet performance metrics

Table 10: SqueezeNet computational requirements

SqueezeNet, similarly, achieves high accuracy as suggested by all the metrics being close to 1

In a comparative analysis of the trained models, as indicated in figures 8 – 12. The models were compared based

on their accuracy metrics and computational requirements, which are presented in Tables 1-10. Although each

model shows an accuracy of close to 100%, MobileNet and ShuffleNet are the best in detecting the potato disease

status using the leaves presented by the dataset. Accuracy and hardware requirements are analysed based on

Figures 14 and 15.

 Precision Recall F1-Score Sensitivity Specificity

Early Blight 0.9434 1 0.97087 1 0.94667

Healthy 0.90323 0.93333 0.91803 0.93333 0.99227

Late Blight 0.9893 0.925 0.95607 0.925 0.9913

Model Number Of

Learnables

Number Of

Operations

Parameter

Memory

(MB)

Number

Of MACs

Arithmetic

Intensity

FLOPs Inference

Time (ms)

SqueezeNet 1823499 776671040 6.9560966 388335520 1709.30075 776671040 3.10668416

JDFEWS 5 (1): 45-68, 2024

ISSN 2709-4529

Adebisi, et al., 2024 JDFEWS 5(1), 2024, 45-68

Figure 14: Accuracy comparison of trained models

Figure 15: Hardware requirement comparison of trained models

The ShuffleNet model was selected based on its training requirement, which is the least in size among the five

models, as presented in Figure 15. This is suitable for embedded devices with the highest validation accuracy

(99.3%), as shown in Figure 16. Other parameters, such as the lowest inference time (0.992ms), make it suitable

for real-time applications such as precision agriculture. In addition, it requires the lowest number of operations.

This is regarded as lightweight and ideal for FPGA deployment as the resources are limited. It is observed that

ShuffleNet model quantization conserves the hardware resources of the FPGA, and the CNN model was

quantized. The quantization technique is an optimisation technique meant to reduce the size of a CNN model,

JDFEWS 5 (1): 45-68, 2024

ISSN 2709-4529

Adebisi, et al., 2024 JDFEWS 5(1), 2024, 45-68

making it suitable for FPGA implementation. The model parameters (i.e., weights and biases) were converted

from floating point (16-bit) to fixed point (8-bit) using MATLAB.

The Effect of Quantization and quantization resulted in a reduction in classification accuracy. However, the

resultant accuracy is still adequate for the application at 98.8%, as presented in Figure 16. However, it is observed

that the model size did not reduce as expected; this is likely due to the lack of pruning, which is the process of

removing certain layers in the model to reduce the model size.

Figure 16: Effect of Quantization

The FPGA selection was successfully connected to the programming module of the simulation over SSH using

ethernet, as shown in Figure 17.

JDFEWS 5 (1): 45-68, 2024

ISSN 2709-4529

Adebisi, et al., 2024 JDFEWS 5(1), 2024, 45-68

Figure 17: Ethernet connection with FPGA

In addition, the creation of a block design in Vivado HLS tool to implement the CNN using MATLAB as shown

in figure 18:

Figure 18: FPGA block design in Vivado HLS

Subsequently, Vitis HLS was used to convert the trained ShuffleNet CNN model into HDL. The HDL code was

then synthesised, and the obtained resource utilization report is presented in Figure 19.

JDFEWS 5 (1): 45-68, 2024

ISSN 2709-4529

Adebisi, et al., 2024 JDFEWS 5(1), 2024, 45-68

Figure 19: Performance and FPGA resource estimates

It can be observed from the performance evaluation result that the CNN model consumed a little percentage of

the FPGAs hardware resources: LUTs (10%), FF (4%), BlackRAMS (237%), and DSPs (8%); hence the CNN

model was sufficiently optimised for the FPGA. Furthermore, a latency of 1.12ns is much faster than the value

achieved in the software (MATLAB) of 0.992ms. In this study, five pre-trained CNN models were trained on the

Plantvillage dataset on CPU+3GB GPU, using the transfer learning technique. It was observed that the training

times were quite long (more than an hour on average), since the platform used was a CPU. All the CNN models

achieved a high validation accuracy of more than 90%. Their performance metrics (sensitivity, recall, specificity,

and F1-score) supported this performance; all were greater than 1.

Furthermore, a comparison of the CNN models showed that the ShuffleNet model was the best for FPGA-based

SoC implementation because of its best performance metrics and the lowest hardware requirement. It achieved

the highest validation accuracy and lowest inference time. The ShuffleNet model was then converted to HDL

using Vitis HLS, and its synthesis report showed low inference time and low FPGA resource utilisation. This

shows that the FPGA was more efficient than the CPU platform for CNN computation. Overall, the study

compares multiple CNN models in MATLAB and selects the most suitable model for FPGA implementation

based on performance metrics. This is followed by optimizing the algorithm using the quantization technique.

Subsequently, the model is converted to HDL to evaluate the CNN model for an SoC platform, which has not

been considered in previous studies for plant disease detection.

Hardware Performance Metrics: Timing Performance

Given that a 100 Mhz clock for the FPGA was selected, this implies that the timing limit is 10ns.The following

timing metrics were obtained:

1. Worst Negative Slack (WNS) :7.161 ns

2. Worst Hold Slack (WHS): 0.019 ns

3. Worst Pulse Width Slack (WPWS): 3.500 ns

Figure 20: Summary of Timing Performance

Since all the values are below 10ns.This indicates that all the timing constraints are met.

JDFEWS 5 (1): 45-68, 2024

ISSN 2709-4529

Adebisi, et al., 2024 JDFEWS 5(1), 2024, 45-68

Power Consumption

The power consumption obtained for the design is 3.333 W, of which 79% of the power is dynamic and 21% is

static. High dynamic power correlates to the intensive requirements of CNN inference, particularly from MAC

operations. Optimizing dynamic power usage can further enhance power efficiency. Nonetheless, a power

consumption of 3.333W indicates that the FPGA is power efficient in inferencing the CNN model, aligning with

the literature findings.

Figure 21: Power Consumption

Resource Utilisation

Table 11 shows the resource utilisation obtained from Vivado.

Table 11: Resource Utilisation

Resource Utilization Available Utilization (%)

LUT 470 230400 0.2

LUTRAM 68 101760 0.07

FF 597 460800 0.13

BUFG 1 544 0.18

JDFEWS 5 (1): 45-68, 2024

ISSN 2709-4529

Adebisi, et al., 2024 JDFEWS 5(1), 2024, 45-68

Figure 22: Percentage Resource Utilisation

LUT (Look-Up Table): A 0.2% LUT utilisation indicates that the design is not heavily reliant on combinational

logic, which is typical for optimized FPGA designs where efficiency and minimizing resource usage are

prioritized.

LUTRAM (Look-Up Table RAM): Similarly, a 0.07% LUTRAM ultilisation suggests efficient use of on-chip

memory resources. This could be due to the effective design of data storage and handling within the CNN model.

FF (Flip-Flop): A 0.13 % utilization suggests an efficient sequential logic design. This is beneficial for

maintaining low power consumption and high performance.

BUFG (Global Clock Buffer): A 0.18% BUFG indicates that the design does not require any global clock

resources, which can be advantageous for minimizing clock distribution complexity and power consumption.

The resource utilization for the FPGA implementation of the CNN model (Table. 10) is very low across all key

resources (LUTs, LUTRAMs, FFs, and BUFGs). This indicates a highly efficient design that conserves FPGA

resources while maintaining the necessary performance for CNN inference. Such efficiency is crucial for

scalability and for deploying multiple instances or additional functionality within the same FPGA. The low

resource usage, combined with the power efficiency discussed earlier, underscores the effectiveness of the FPGA

implementation for CNN inference.

5.0 Conclusions and Future Work
In conclusion, the study findings illustrated the effectiveness of CNNs for potato disease identification, with all

the selected CNN models reaching a validation accuracy of over 90%. The ShuffleNet model was the most suitable

for FPGA deployment since it achieved the highest validation accuracy and the lowest inference time, attributed

to its efficient architecture. The implementation of the CNN on the Xylinx UltraScale+MPSoC ZCUQ04 board

demonstrated significant efficiency in power consumption and resource utilization. The total power consumption

was 3.333 W, with 79% being dynamic power, reflecting the computational demands of CNN inference. Despite

this, the FPGA's power efficiency is consistent with existing literature, confirming its viability for real-time CNN

tasks.

Furthermore, the design fulfilled all timing constraints with positive slack values (WNS of 7.161 ns and WHS of

0.019 ns), indicating reliable operation at the intended clock frequency of 100 MHz. This ensures that the FPGA

can handle real-time inference tasks efficiently. Resource utilization was low, with only 0.20% of LUTs, 0.07%

of LUTRAMs, 0.13% of flip-flops, and 0.18% of BUFGs used, indicating an optimized design that maximizes

FPGA capabilities while conserving resources. The results highlight the FPGA's potential as an efficient, high-

performance alternative to CPU and GPU implementations, providing a viable solution for real-time potato

disease identification on platforms such as UAVs. The use of FPGAs, moreover, provides a means for real-time

disease identification. Therefore, the research contributes to the existing knowledge on implementations of CNN

for potato disease classification and FPGA acceleration for real-time detection.

JDFEWS 5 (1): 45-68, 2024

ISSN 2709-4529

Adebisi, et al., 2024 JDFEWS 5(1), 2024, 45-68

REFERENCES

[1] Devaux, P. Kromann, and O. Ortiz, ‘Potatoes for Sustainable Global Food Security’, Potato Res, vol. 57, no. 3, pp.

185–199, 2014.

[2] M. E. Çalışkan, M. F. Yousaf, C. Yavuz, M. A. B. Zia, and S. Çalışkan, ‘History, production, current trends, and

future prospects’, in Potato Production Worldwide, Elsevier, 2022, pp. 1–18. doi: 10.1016/B978-0-12-822925-

5.00016-5.

[3] K. K. Bastas, ‘Bacterial diseases of potato and their control’, in Potato Production Worldwide, Elsevier, 2022, pp.

179–197. doi: 10.1016/B978-0-12-822925-5.00017-7.

[4] Namibian Agronomic Board, ‘Market Intelligence Report for Potatoes’, 2021. [Online]. Available: www.nab.com.na

[5] R. Kanter, H. L. Walls, M. Tak, F. Roberts, and J. Waage, ‘A conceptual framework for understanding the impacts

of agriculture and food system policies on nutrition and health’, Food Secur, vol. 7, no. 4, pp. 767–777, 2015.

[6] P. M. J. P. D. N. Yashasvi Khaparde, ‘PLANT CHECK: POTATO LEAF DISEASE DETECTION USING CNN

MODEL’, International Journal of Engineering Applied Sciences and Technology, vol. 8, no. 5, pp. 129–132, Sep.

2023.

[7] S. Bangari, P. Rachana, N. Gupta, P. S. Sudi, and K. K. Baniya, ‘A survey on disease detection of a potato leaf using

CNN’, in 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS), 2022.

[8] Y. Luo, X. Cai, J. Qi, and W. Che, ‘FPGA–accelerated CNN for real-time plant disease identification’, Comput

Electron Agric, vol. 207, p. 107715, 2023.

[9] C.-H. Huang, ‘An FPGA-based hardware/software design using binarized neural networks for agricultural

applications: A case study’, IEEE Access, vol. 9, pp. 26523–26531, 2021.

[10] T. Saidani and R. Ghodhbani, ‘Embedded plant disease recognition using Deep Plantnet on FPGA-SOC’, 2022.

[11] J. Lu, L. Tan, and H. Jiang, ‘Review on Convolutional Neural Network (CNN) applied to plant leaf disease

classification’, Agriculture, vol. 11, no. 8, p. 707, 2021.

[12] T. Z. J. A. A. Moshood Onifade, ‘Towards application of positioning systems in the mining industry’, Int J Min Miner

Eng, vol. 15, no. 1, pp. 15–48, 2024.

[13] M. Dhanaraju, P. Chenniappan, K. Ramalingam, S. Pazhanivelan, and R. Kaliaperumal, ‘Smart Farming: Internet of

Things (IoT)-Based Sustainable Agriculture’, Agriculture 2022, Vol. 12, Page 1745, vol. 12, no. 10, p. 1745, Oct.

2022, doi: 10.3390/AGRICULTURE12101745.

[14] A. Arshaghi, M. Ashourian, and L. Ghabeli, ‘Potato diseases detection and classification using deep learning

methods’, Multimed Tools Appl, vol. 82, no. 4, 2023, doi: 10.1007/s11042-022-13390-1.

[15] J. Jiang et al., ‘Hierarchical Model Parallelism for Optimizing Inference on Many-core Processor via Decoupled 3D-

CNN Structure’, ACM Transactions on Architecture and Code Optimization, vol. 20, no. 3, 2023, doi:

10.1145/3605149.

[16] C. Hou et al., ‘Recognition of early blight and late blight diseases on potato leaves based on graph cut segmentation’,

J Agric Food Res, vol. 5, 2021, doi: 10.1016/j.jafr.2021.100154.

[17] R. Ghodhbani, T. Saidani, and H. Zayeni, ‘Deploying deep learning networks based advanced techniques for image

processing on FPGA platform’, Neural Comput Appl, vol. 35, no. 26, 2023, doi: 10.1007/s00521-023-08718-3.

[18] R. Ghodhbani, L. Horrigue, T. Saidani, and M. Atri, ‘Fast FPGA prototyping based real-time image and video

processing with high-level synthesis’, International Journal of Advanced Computer Science and Applications, no. 2,

2020, doi: 10.14569/ijacsa.2020.0110215.

[19] T. Saidani and R. Ghodhbani, ‘Hardware Acceleration of Video Edge Detection with Hight Level Synthesis on the

Xilinx Zynq Platform’, Engineering, Technology and Applied Science Research, vol. 12, no. 1, 2022, doi:

10.48084/etasr.4615.

[20] S. Park and T. Suh, ‘Speculative Backpropagation for CNN Parallel Training’, IEEE Access, vol. 8, 2020, doi:

10.1109/ACCESS.2020.3040849.

JDFEWS 5 (1): 45-68, 2024

ISSN 2709-4529

Adebisi, et al., 2024 JDFEWS 5(1), 2024, 45-68

[21] L. Tuggener, J. Schmidhuber, and T. Stadelmann, ‘Is it enough to optimize CNN architectures on ImageNet?’, Front

Comput Sci, vol. 4, 2022, doi: 10.3389/fcomp.2022.1041703.

[22] A. M. Abubakar, K. A. Abdulsalam, and J. A. Adebisi, ‘Application of Artificial Neural Network for Diagnosis of

Cerebrospinal Meningitis’, Journal of Engineering Research, vol. 24, no. 2, pp. 12–25, 2019.

[23] K. A. L. N. O. O. J Adebisi, ‘Development of an Artificial Intelligence Driven Mobile Application for Medical

Diagnosis and Consultancy’, Adeleke University Journal of Engineering and Technology, vol. 6, no. 1, pp. 1–9, 2023.

[24] B. Zhou, X. Wang, J. Zhou, and C. Jing, ‘Trajectory Recovery Based on Interval Forward–Backward Propagation

Algorithm Fusing Multi-Source Information’, Electronics (Switzerland), vol. 11, no. 21, 2022, doi:

10.3390/electronics11213634.

[25] Y. Sun, B. Xue, M. Zhang, G. G. Yen, and J. Lv, ‘Automatically Designing CNN Architectures Using the Genetic

Algorithm for Image Classification’, IEEE Trans Cybern, vol. 50, no. 9, 2020, doi: 10.1109/TCYB.2020.2983860.

[26] C. Wang, L. Li, C. Yan, Z. Wang, Y. Sun, and J. Zhang, ‘Cross-modal semantic correlation learning by Bi-CNN

network’, IET Image Process, vol. 15, no. 14, 2021, doi: 10.1049/ipr2.12176.

[27] S. D. Okegbile and B. T. Maharaj, ‘Age of information and success probability analysis in hybrid spectrum access-

based massive cognitive radio networks’, Applied Sciences (Switzerland), vol. 11, no. 4, 2021, doi:

10.3390/app11041940.

[28] S. D. Okegbile, J. Cai, H. Zheng, J. Chen, and C. Yi, ‘Differentially Private Federated Multi-Task Learning

Framework for Enhancing Human-To-Virtual Connectivity in Human Digital Twin’, IEEE Journal on Selected Areas

in Communications, vol. 41, no. 11, 2023, doi: 10.1109/JSAC.2023.3310106.

[29] K. A. Abdulsalam, J. Adebisi, M. Emezirinwune, and O. Babatunde, ‘An overview and multicriteria analysis of

communication technologies for smart grid applications’, e-Prime-Advances in Electrical Engineering, Electronics

and Energy, vol. 3, p. 100121, 2023.

[30] A. John A, B. Damilola E, and B. Olubayo M, ‘A multicriteria framework for selecting information communication

technology alternatives for climate change adaptation’, Cogent Eng, vol. 9, no. 1, p. 2119537, 2022.

[31] A. Adebisi J, B. Damilola E, and B. Olubayo M, ‘A multicriteria framework for selecting information communication

technology alternatives for climate change adaptation’, Cogent Eng, vol. 9, no. 1, p. 2119537, 2022.

[32] J. Duchi, E. Hazan, and Y. Singer, ‘Adaptive subgradient methods for online learning and stochastic optimization’,

in COLT 2010 - The 23rd Conference on Learning Theory, 2010.

[33] J. Duchi, E. Hazan, and Y. Singer, ‘Adaptive subgradient methods for online learning and stochastic optimization’,

Journal of Machine Learning Research, vol. 12, 2011.

