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Abstract: Presented in this study is an artificial intelligence approach 

to pitch angle control in wind turbine for the enhancement of power gen-

eration efficiency of wind energy conversion systems. A two-input neu-

ral network model was developed, trained using backward propagation 

technique and employed in adjusting the pitch angle of the turbine in 

response to the speed of the turbine generator and the rate of change of 

the speed. Ten-year real-life data on the wind speeds of a study location 

was used to validate the approach. At a peak performance, power output 

of 1300 W was obtained through the NN-based control as compared to 

950 W from the non-NN adjustment. This shows that the method per-

forms well in controlling the power above the turbine’s rated wind 

speed. The approach is thus recommended for an effective management 

of the wind energy conversion systems towards improving reliability in 

electric power supply. 
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1 Introduction 

Electric power systems hold the key to national development. Adoption of renewable energy resources, among 

which wind energy is prominent, is thus persistently gaining attention as the world experiences unabated increase 

in demand for electricity. Wind energy becomes most popular renewable energy option due to its cleanliness and 

minimal maintenance requirements of the energy’s conversion facilities [1]. Wind energy conversion (WEC) 

technology has expanded significantly over several decades and has become the most cost-effective approach to 

renewable energy harvesting at present [2–4]. In the technology, WEC systems transform the kinetic energy of 

wind-flow to electricity. The kinetic energy then converts to mechanical power by the rotation of wind turbine 

blade, while the turbine generator, in turn, employs the mechanical power to generate electricity [5].  

Since the flow of wind fluctuates, there is a corresponding fluctuation in the developed mechanical power, with 

consequential fluctuations in the magnitude of the electric power generated. To this end, wind turbines are in-

tended to only function within wind power availability constraints [6, 7] to avoid severe weather that may cause 

damage to them. Proper wind turbines control is thus critical in the deployment of the technology as this promotes 

efficient use of the capacity of WEC systems and alleviates aerodynamic and mechanical stresses [8].  

Turbines with variable speeds perform in two distinct areas: above-rated and below-rated power; to capture the 

most wind speed whenever the power output falls under the expected values. Whenever the flow rate of the wind 

is less than the cut-in speed, the rotational speed of the wind turbine generator (WTG) is zero and thus produces 

no power [9, 10]. If the wind is below the rated speed and above the cut-in, maximum power can be collected 

from the wind by some controlling mechanism call maximum power point tracking (MPPT) technique [11]. At 

the above-rated-speed range, the primary goal becomes maintaining consistent power output without damage to 

the system. This is usually done by reducing the amount of wind energy collected, which is performed by adjusting 

the pith angle of the blades [12, 13]. Therefore, in addition to alleviating mechanical stress, robust power quality 

management and manipulation of reactive resource usage are other reasons for system control in WEC systems.  

Oscillation in the output energy, as a result of changing wind speed, is a major challenge of WEC systems; and 

adjustment of the blade angle has been the major solution to this fluctuation of power [14]. By adjustment, wind 

speed beyond the rated value is checked by triggering pitch angle control mechanism [8] in order to keep the 

power output constant at its rated value. Management of the pitch angle is a method in which the turbine blade 

angle is varied as the power control variable beyond the wind speed rated value [15]. Proportional-integral (PI) 

controller has been commonly used as pitch angle adjuster; but despite its simplicity, [14, 15] submit that the 

controller cannot reach the optimized performance due to the non-linear dynamics of WTG. Therefore, different 

control structures like nonlinear PI (N-PI) [15] and fractional order PI (F-PI) [16]; have been in use. As well, 

structural cascade control [13] and the control fault tolerant [17] are used in compensating unknown time-varying 

nonlinearity and disturbances. Some other available techniques are observer-based blade pitch control [18] and 

fuzzy logic control [19–21]. In addition, pitch angle control has been improved through model predictive control 

(MPC) approach, but with related prediction computing complexity [22]. Another way by which pitch control has 

been improved is that instead of relying on prediction, the control is accomplished using a future knowledge of 

wind conduct and the wind speed data sent to WTG from one another [23]. Such signal may then be provided for 

the MPC to ensure best possible response [18–19]. Information on future wind conditions aids MPC to provide 

optimal solutions while considering system constraints [20]. The MPC can also predict future behavior using a 

plant model, and as a result, the WTG control system has shown significant gains [21]. From a practical standpoint, 

however, the online solution of quadratic program is the main drawback of the MPC [20, 21]. As a result, a better 

method for controlling pitch angle is required; hence, this present study proposes the use of artificial neural net-

works (ANN) for the control. 

At the core of the concept of the approach presented in this study is the design of an MPC-based controller that 

is capable of constantly maintaining minimum fluctuation in the power output of WEC systems [22]. The strategy 
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involves providing wind speed data to the wind turbine ahead of time using backward propagation neural networks 

(BPNNs). In the literature, neural networks (NNs) have been used to build nonlinear control systems. It is therefore 

employed in this study for pitch control in WEC system to maintain a constant power output level in the region 

over the rated output power. The controller is designed to perform an advance optimal control action and minimize 

undesired power fluctuations [24–26]. This proposed method is demonstrated using a software-based simulation 

platform with wind turbine model and a real-life windspeed data.    

The remaining parts of this paper are arranged as follows: while methodology of the study and materials used 

are presented in Section 2, Section 3 contains and discusses the results of the demonstration of the approach, and 

Section 4 draws the conclusion of the study. 

2 Methodology 

A model of the WEC system whose pitch angle was controlled using neural network (NN), was developed on 

the simulation environment of MATLAB/Simulink. Figure 1 is a blocked diagram that depicts the modeling. 

While inputs to the NN are the current speed of the turbine generator and the change rate of the speed, its singular 

output is the shifting angle of the differential pitch of the wind turbine. The mechanical power developed by this 

turbine is thus a product of the varying angle of the pitch. 

 

Fig.1. Block diagram of the NN-based control of pitch angle in WEC system 

The operational characteristics of a typical WEC system are as represented by the plots in Figure 2 that show 

the relationship among the parameters of the system. WEC system is generally characterized by tip speed ratio (λ) 

and power coefficient (Cp) that is described in [27] as: 
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Where   represent turbine speed, R  stands for radius of the swept area of the turbine rotor, Wv is the wind speed, 

α is the pitch angle, 𝛽 = 𝑘3𝛼 + 𝑘4𝛼
𝑘5 + 𝑘6, 𝛾 = 𝛼3 + 𝑘8𝑘9𝛼 + 1, and Λ = 𝑘8(𝛼

3 + 1)𝛼.  

By general description, approximately mechanical power, mP , developed by the turbine blades from the wind 

flow is [31–33]: 

35.0 Wpm vACP =                                                       (2) 



 
 

JDFEWS 4 (2): 72-82, 2023 

ISSN 2709-4529 
 

Ajewole, et al., 2023  JDFEWS 4(2), 2023, 72-82 

Where  stands for the air density and A for the swept area of turbine rotor blade. If   stands for the turbine 

speed, then  max  represents the maximum turbine speed at which maximum mechanical power is developed 

from wind flow. Therefore, the wind speed,
*

Wv , at which the maximum mechanical power is harvested is [27]:   
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Thus, the maximum mechanical power accruable from the wind by the turbine is a function of 𝛼 and max as 

[27]: 
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Adapting the turbine speed to rotational speed of the turbine generator requires a gear system with ratio


n
gr =

, where n  is the generator speed. This generator speed thus relates with mechanical power as [27]: 
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Thus, from equation (3), the relationship among wind speed, pitch angle and generator speed is obtained as [27]: 

 

           
( )( )

( ) 








++

+++
=

2171721

97212171

3
* 1

max

kkkkkkk

kkkkkkkk
R

r
v

g

n

W



   (6) 

 

 

 

 

 

 

 

 

 

 

 

   

 
Fig. 2. Operational characteristics of a typical WEC system. Adapted from [27] 
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Training procedures and computations in neurons and layers of the NN model are carried out using Levenberg-

Marquardt (LM) algorithm. LM is a second-order algorithm [28, 29] that can solve complex problems [30]. The 

block diagram of the NN model developed with two hidden layers of 16 neurons altogether is display in Figure 3. 

Present generator speed,
n , and rate of change of the speed, 𝜔𝑛

′  are the two inputs into the model; while the 

output is the varying pitch angle which determines the power quality generated. Generally, NN is expressed as 

[30]: 

                                                    𝑌 = 𝑋𝑇𝑊                                              (7) 

Where;  

X represent input; 

W for the weight, and  

Y for the target / output. 

 

 

Fig. 3. Block diagram of the NN model 

The procedures followed for the multi-layer perceptron learning are: 

Step one:  Data propagation layer to the output from the input; forward propagation 

Step two:  The actual and the predicted outcome differences are determined as; calculative error on the output 

bases.  

     Step three:  The network and updated model with respect to each weight are obtained as derivative error; error 

back-propagation.  

Step four:  Steps 1to3 were to learn ideal weight over multiple epochs; and 

Step five: to obtain the predicted class labels, the output via a threshold function is taken.  

The hidden layer activation unit 𝑎1(ℎ) is calculated in the first step as [30]: 

𝑍1(ℎ) = 𝑎0(𝑖𝑛)𝑤0,1(ℎ) + 𝑎1(𝑖𝑛)𝑤1,1(ℎ) +⋯+ 𝑎𝑖(𝑖𝑛)𝑤𝑘,1(ℎ)     (8) 

    𝑎1ℎ = ∅(𝑍1(ℎ))                     (9) 

The activation unit results is the application of activation function, ∅, to the 𝑧 value. This is differentiable for 

weight learning using gradient descent. The activation function is mostly the sigmoid (logistic) functions. 

  ∅(𝑧) =
1

1+𝑒−𝑧
      (10) 

In order to solve complex problems like image processing, the nonlinearity needed is allowed. The hidden layer 

activation is also represented as [30]: 

               𝑧(ℎ) = 𝑎(𝑖𝑛). 𝑤(ℎ)     (11) 

Where the output later is: 

            𝑍(𝑜𝑢𝑡) = 𝐴(ℎ).𝑤(𝑜𝑢𝑡)     (12) 

Wherein,  

𝑎(𝑖𝑛) = ith value is the input layer 

𝑎𝑖(ℎ) =  ith unit is the hidden layer 

𝑎𝑖(𝑜𝑢𝑡) =  ith value in the output layer 

𝑎0(𝑖𝑛) =   The corresponding weight 𝑤0 with bias unit 

𝑤𝑘,𝑗(𝑖) =  from layer 1 to layer i+1 is the weight coefficient 
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 Training, validation, and testing of the NN algorithm was achieved using 70%, 15% and 15% respectively, of 

the wind speeds data; while mean square error (MSE) was used as evaluation index. The data, which is ten-year 

real-life wind speeds in the city of Ibadan (Nigeria) as recorded per minute for the period, was obtained from 

Climate Hazards Group Infrared Precipitation Station (CHIPPS). Performances of the proposed control mecha-

nism are evaluated by investigating the behavior of the turbine to the wind speeds that are greater than the rated 

capacity of the turbine. The output mechanical power relates to the variations in the pitch angle, which is a function 

of the turbine generator’s speeds. 

3 Results and Discussion  

Results obtained from the demonstration of the pitch controller are here presented and discussed. Regression 

analysis, training, and validation of the NN model, as well as mechanical power output behavior of the WEC 

system based on the approach of this study are described. 

Shown in Figure 4 are the regression analysis curves wherein outputs are plotted against targets. The four plots: 

training, validation, test, and all; are presented, with the all-plot giving an overall performance of the algorithm. 

The closer the target to the output, the better the regression plots. Likewise, the more the regression value is to 1, 

the better. The output value represents the equation of a straight line. The coefficient of the target is the gradient, 

and the constant value is the intercept on output axis. Also, the more the slope is to unity and the intercept to zero, 

the better the regression plot. The curves show regression values of 0.97343, 0.97512, 0.99185 and 0.97651 for 

the training, validations, tests, and all, respectively. The all-plot’s regression of 0.97651 was considered to be 

good value, and so the algorithm was deployed for the pitch angle control. 

 

In Figure 5 is revealed the performances of the algorithm. The best validation performance of the NN model was 

22.1343 at epoch 91. This validation value implied that the model could be deployed for the proposed prediction. 
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Fig. 4. Plots showing the results of regression analysis. 

 

 

 

 
Fig. 5. Performances of the model at training and validation 

 

Figures 6 and 7 respectively show the pitch angle adjustment using the NN-based controller and the corre-

sponding mechanical power developed, as compared with the defaults. While in Figures 6 the actual and the 

predicted values of the pitch angle are compared, the mechanical power developed in response to the pitch adjust-

ment is presented in Figure 7. At a peak performance on the figure, power output of 1300 W was obtained through 

the NN-based control as compared to 950 W from the default method. This shows 38.89% increase in the power 

developed by the turbine. 

Best Validation Performance is 22.1343 at epoch 91 
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Fig. 6. Comparison between the actual and the NN predicted pitch angle. 

 
Fig.7. Mechanical power developed using the NN-Based pitch angle controller. 

4 Conclusion  

With the simulation experiments carried out, this study has found out that the NN-based pitch angle control of 

wind turbines performs well in controlling the mechanical power developed by wind energy conversion systems 

above the turbine’s rated wind speed. The control mechanism performs well in the above-rated-wind-speed region 

of operation, with increase in the mechanical power developed by the turbine. The approach is thus recommended 

for the enhancement of pitch angle control and the overall efficiency of wind energy conversion systems for better 

reliability of electric power supply. For hierarchy of decision-making, however, the control mechanism can be 

developed further using deep neural network. 
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