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Abstract: This paper investigates the effect of Support Vector Regression hyperparameters 

optimization on electrical load prediction. Accurate and robust load prediction helps policy makers in 

the energy sector to make inform decision and reduce losses. To achieve this, Bayesian optimization 

technique was employed for the hyperparameters optimization which are then used for the load 

prediction. The hyperparameters are the regularization parameters and the epsilon. In addition, the 

effects of sliding window during the load prediction were also evaluated. The sliding window values 

were varied from 1 to 5. The results showed that the sliding window of 1 had the optimized 

hyperparameters with the best performing evaluation metrics of 0.01912 and 0.09493 for MSE and 

MAE respectively.      
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1. Introduction 

Increase in population and industrialization have necessitate high consumption of electrical power [1], [2]. 

Consequently, attention has been devoted to the management and control of power system across the globe [3], [4]. 

Electrical load prediction plays crucial role in power system operation and planning [5]. Accurate and robust load 

forecasting is, therefore, needed [6]. Human and financial resources have been devoted to control and manage electric 

power efficiently [7]. There is, therefore, need to employed all necessary tools available to achieve stable, effective 

and affordable power system that is devoid of losses The forecasting of power generated from the generation and the 

power needed form the consumers end is at the heart of an Energy Panning Model [8]. Load forecasting is the way of 

anticipating future electric power based on previous data and the weather conditions [9]. There are several load 

forecasting horizons employed by the power system companies for different applications in the industries [10]. These 

applications include planning [11], control [12], future load scheduling [13], staff hiring [14] and equipment expansion 

[15]. Short term load prediction is the forecasting of future from minutes to a week [16]. STLF is useful in power 

system control [17]. Medium term load prediction is from a week to a year [18].. Long term load prediction has the 

longest time horizon which is usual more than a year [19]. Medium term prediction is employed in the area of setting 

up of fuel supply and sustainment  operation and Long term prediction improves system operations delivery and 

planning [20]. Long term prediction is also employed for power system expansion [5].Therefore, accurate load 

prediction is absolutely essential on the efficient administration of power system planning, control and management. 

An inaccurate load forecast could lead to waste of scarce resources. Grid collapse is inevitable in absence of robust 

load prediction.  

Several approaches have been employed for load predictions. Statistical methods and machine learning methods have 

been employed by researchers for the implementation of load forecasting. Statistical methods employed in load 

prediction include Time series analysis; like Moving average (MA), Autoregressive model (AR), Autoregressive 

integrated moving average (ARIMA), Autoregressive moving average model (ARMA), Exponential smoothing is also 

part of the method. [21] presented a study that aims to develop and evaluate an ARIMA for forecasting radiation of 

the sun in South Korea’s capital, Seoul. The dataset used was more than 37 year and was collected from the Korean 

Meteorological Administration. To test the accuracy of the model, it was compared with Monte Carlo simulations 

using RMSEs, Coefficient of Determination (R2), Phillip-Perron Test and Jarque-Bera Test as evaluation metrics. 

However, the study does not consider other factors such as cloud cover, humidity and temperature which could affect 

the correctness of solar predictions. Additionally, more data points from different locations would be needed to further 

validate the results obtained in the study for a wider range of applications.  

[22] employed ARIMA-based modelling to study factors that affect traffic congestion and provides a guide on how to 

build an effective model for predicting abnormal status. However, the study does not address the underlying causes 

of traffic congestion such as population growth or inadequate infrastructure. [23] presented an analysis and forecasted 

results for short-term electrical load forecasting, employing three predictive models: ARMA, ARIMA and 

Autoregressive Integrated Moving Average Model with Exogenous variable. The performance of the models was 

evaluated using MAPE. Although, the paper did not discuss the limitations of using time series approach for short 

term load prediction.  

Artificial intelligence techniques have employed by researchers for load predictions. Examples of AI techniques used 

are expert systems  [24], artificial neural network [25], Fuzzy logic systems [26], evolutionary algorithms [27] and 

deep learning [28], [29]. [30] presented a extensive study of very-short term (hour-ahead) and short-term (day ahead) 
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load prediction in an urban building by applying neural networks (NN). The performance of the NN was evaluated in 

view of two backpropagation learning principle, the Levenberg-Marquardt and Bayesian technique. It also investigates 

how network model parameters, such as number of neurons, hidden layers, and input layers, affect the model’s ability 

to precisely predict loads. To exhibit its efficiency, it was tested on exact dataset from a campus in downtown Montreal 

that constitutes many types of buildings with diverse functionalities. However, the effects of different work design 

parameters on load forecasting accuracy could be further explored. Also, it would be beneficial to investigate 

alternative machine learning models such as Support Vector Regression (SVRs) or ensembles in order to compare 

their performance against ANNs for short-term load prediction tasks. [31] proposed a model employing fuzzy logic 

to forecast short-term energy demand with respect to weather parameters. They employed triangular membership 

functions with support upon collected data along with production rules formed through basic language understanding 

in order to make forecasts about future load demand. Finally, they suggest further studies could focus on tuning their 

proposed model more accurately while reducing time and computational effort required for such tasks. [32] presented 

a machine learning with evolutionary models based short term load prediction model for power systems, which uses 

Wavelet Transform and Artificial Fish Swarm Optimization to improve the predictive process. However, the authors 

suggested that future studies could focus on improving predictive outcomes of this method by using deep learning and 

hyper-parameter optimization techniques. [33] investigated the potential of using deep learning approaches for 

residential load forecasting under high volatility and uncertainty. A new Pooling-based Deep Recurrent Neural 

Network (PDRNN) was proposed to solve overfitting challenges caused by naïve deep networks, accepting more 

layers before occurrence of overfitting while still capturing geographical information common between interconnected 

customers. Although further research could be done to explore how data privacy and security can be addressed when 

using deep learning techniques for residential load forecasting. Additionally, investigating if the findings of the study 

are applicable to other types of households. 

The aim of this study is to optimize the hyperparameters of the Support Vector (SVR) for improved load prediction. 

The specific objectives of the studies are to develop the SVR models with Python using Google Collab platform and 

to also evaluate and compare the SVR models using sliding window techniques.     

2. Review of Literature 

Ref [34] proposes a hybrid model called SVR-LSTM for short-term load forecasting in a microgrid (MG) in Africa. 

The model combines Support Vector Regression (SVR) and Long Short-Term Memory (LSTM) algorithms. The 

SVR-LSTM model is compared with conventional SVR and LSTM models, and it shows better results with a 

correlation coefficient of 0.9901, compared to 0.9770 and 0.9809 for SVR and LSTM respectively. [35] developed a 

machine learning algorithm for electric load forecasting that incorporates an asymmetric loss function to account for 

the different costs associated with over-prediction and under-prediction errors. The framework is tested using electric 

load data from New South Wales in Australia and is shown to result in a significant reduction in daily economic costs 

compared to basic support vector regression. The cost reduction ranges from 42.19% to 57.39% depending on the 

actual cost ratio of the two types of errors. [36] propose a hybrid support vector regression (HSVR) for medium and 

long-term load forecasting in the smart grid. It focuses on the coupling and interdependent relationship between 

hyperparameters and model parameters in the optimization process. 
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3. Materials and Methods 

3.1 Description of the dataset 

Monthly dataset for the six-business hub in Ogun State were used in this study. The six hubs were used in order to 

captured the entire load consumption of Ogun State. The initial dataset was in Mega-Watt-hour (MWh), its summation 

was divided by twenty-four to convert it to MW. The duration of the entire dataset is 5 years, from 2018 to 2022.  The 

actual total consumption in MW, which is the target during the prediction, was evaluated. The sample of the 2018 

dataset was presented in Table 1. The data was obtained from Ibadan Electricity Distribution Company (IBEDC). 

Ogun State is a state in the southwestern zone in Nigeria, it is the second largest economy in the region. The state was 

created on 3rd February 1976. Ogun State borders Osun and Oyo states in the northern zone, to the north is Lagos 

state, Ondo state and Republic of Benin in the eastern and western zone respectively. Ogun state capital is Abeokuta, 

the most densely populated area in the state. Other notable areas in the state are Sagamu, Ota, Ijebu-Ode and Sango.  

       Table 1: Energy consumption distribution 

Months Ijebu Ijeun Olumo Ota Sagamu Sango 
Actual Total 

Consumption in MW 

January 7,187  7,383  7,961  15,072  17,814  11,222  2,777 

February 5,374  7,142  8,572  14,130  18,565  11,106  2,704 

March 6,882  7,530  8,300  16,321  21,947  11,206  3,008 

April 7,258  7,383  8,383  15,296  21,312  10,931  2,940 

May 6,763  5,696  6,554  14,466  21,410  10,301  2,716 

June 4,105  4,960  5,618  14,360  19,401  10,158  2,442 

July 6,046  4,301  5,449  15,674  22,679  11,266  2,726 

August 6,621  4,756  6,455  16,494  23,729  12,403  2,936 

September 5,322  4,606  6,133  15,071  16,615  9,965  2,405 

October 4,930  4,870  6,305  16,559  18,383  11,145  2,591 

November 3,915  6,058  6,900  15,376  19,097  12,837  2,674 

December 5,412  6,245  7,533  16,447  21,538  11,373  2,856 

3.2 Models Implementation  

Python code was employed for the development of the Support Vector Regression model. Python libraries like Pandas, 

Numpy, Matplotlib, Scikit-learn and skopt were imported. To optimize the hyperparameters of the SVR, Bayesian 

optimization techniques was employed. Sliding window techniques was used to develop the SVR models. The sliding 

window values were varied from 1 to 5 in order to observe the effects of the variation on the performances of the 

models. The dataset was divided into 70% for training and 30% for testing.  
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3.3 Support Vector Regression 

Support vector regression (SVR) is a supervised machine learning model to handle regression problems [37]. SVR is 

a machine learning regression algorithm. Regression model is suitable to analyze the link between input and output 

variables. SVR develops an optimization question to learn a regression function that maps input and output variables 

[38]. 

The mathematical development of a linear support vector regression can be put as follows. Suppose Using the training 

data ( ) ( ) 1 1, ,..., , ,n nx y x y  where nx  and ny  are input and target output respectively. The linear function f  can 

be put as [38]: 

                                 ( ) Ty f x w x b w x b= = + = +                 (1) 

where w x  stands for the dot the product of input data x  with the weight vector w . Equation (1) can also be re-

written as: 

                                
21
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The original optimization problem in Equation (2) is now be represented as a multiobjective optimization problem 

with supplementary parameters   and 
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                (3) 

where 0C    is a regularization parameter that determines the trade-off between the flatness of function f and the 

prediction errors. A large C value gives more weight to minimizing the prediction errors, while a small C value gives 

more weight to minimizing the flatness. 
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Two SVR hyperparameters, the regularization parameters (C) and epsilon ( ),  were optimized. The mean test score 

and the rank test score of the optimize hyperparameters were obtained. The best ranked hyperparameter was 

subsequently used for the training and testing.  

3.4 Model Performance Evaluation 

To evaluate the Support Vector Regression models, mean square error (MSE) and mean absolute error (MAE) were 

employed. Equation 4 and 5 represent the MSE and MAE respectively. The more the evaluation results are closer to 

zero, the better the performance of the model. The metrics were used to interpret and determine the accuracy of the 

model. 

                 

1

1
ˆ

N

i

MAE y y
N =

= −    (4) 

                 ( )
2

1

1
ˆ

N

i

MSE y y
N =

= −                                 (5) 

4. Results and Discussion 

4.1 Hyperparameters Optimization 

Table 2 shows the results of the hyperparameters optimization when the sliding window, w is one (w=1). The 

hyperparameters were graded according to their rank test score with respect to the mean test score. The lower the 

mean test score, the higher the rank test score. The best ranked hyperparameters’ values for regularization parameter, 

C and epsilon,  are 333.131121 and 0.01 respectively with a mean test score of -0.039581. Table 2 represents when 

the sliding window is two (w=2). The best hyperparameters for C and  are 380.189396 and 0.01 respectively, with 

a mean test score of -0.044034. The optimization results when the sliding window is three (w=3) is shown in Table 3. 

The value of the hyperparameters C and  is 1.513561 and 0.01 respectively. Iteration indices 2 and 10 have the same 

rank test score of 1. 
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Table 2: Optimization results when sliding window, w, is one (w=1) 

      

 

 

 

 

 

 

 

 

 

 

Table 2: Optimization results when sliding window, w, is two (w=2) 

 

 

        

 

 

 

 

 

 

 

 

 

 

 

 

Iteration 

index 

Hyperparameters Mean Test 

Score 

Rank Test 

Score C Epsilon 

10 333.131121 0.01 -0.039581 1 

13 125.892541 0.01 -0.039581 2 

11 380.189396 0.01 -0.039616 3 

2 1.513561 0.01 -0.040062 4 

0 1.513561 0.07 -0.045347 5 

7 1.148154 0.05 -0.046432 6 

6 660.693448 0.08 -0.047407 7 

5 109.647819 0.1 -0.053295 8 

12 6.918310 0.1 -0.053298 9 

9 0.165959 0.04 -0.057868 10 

Iteration 

index 

Hyperparameters Mean Test 

Score 

Rank Test 

Score C Epsilon 

11 380.189396 0.01 -0.044034 1 

12 660.693448 0.01 -0.044117 2 

10 331.131121 0.01 -0.044328 3 

14 109.647820 0.01 -0.045258 4 

2 1.513561 0.01 -0.045411 5 

13 1.148154 0.01 -0.045602 6 

7 1.148154 0.05 -0.050325 7 

6 660.693448 0.08 -0.051769 8 

0 1.513561 0.07 -0.053758 9 

5 109.647820 0.1 -0.060272 10 
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Table 3: Optimization results when sliding window, w, is three (w=3) 

 

 

 

 

 

 

 

 

 

 

Table 4 shows the optimization results when sliding window is 4. The regularization parameter, C and Epsilon,  are 

1.513561 and 0.01 respectively. The minimum mean test score is -0.057324 with iteration index of 2. Table 5 

represents the result when the sliding window is 5. Iteration index of 5 has the most optimized hyperparameters of 

109.657820 and 0.01 for C and   respectively.   

Table 4: Optimization results when sliding window, w, is four (w=4) 

 

 

 

  

 

 

 

 

 

 

 

 

 

Iteration 

index 

Hyperparameters Mean Test 

Score 

Rank Test 

Score C Epsilon 

2 1.513561 0.01 -0.045954 1 

10 1.513561 0.01 -0.045954 1 

12 1.513561 0.03 -0.052053 3 

7 1.148154 0.05 -0.058582 4 

11 1.513561 0.05 -0.059019 5 

13 1.513561 0.06 -0.060360 6 

0 1.513561 0.07 -0.062599 7 

6 660.693448 0.08 -0.065770 8 

9 0.165959 0.04 -0.067642 9 

5 109.647820 0.1 -0.074636 10 

Iteration 

index 

Hyperparameters Mean Test 

Score 

Rank Test 

Score C Epsilon 

2 1.513561 0.01 -0.057324 1 

11 1.513561 0.01 -0.057324 2 

10 331.131121 0.01 -0.065398 3 

7 1.148154 0.05 -0.070806 4 

9 0.165959 0.04 -0.076877 5 

5 109.647820 0.1 -0.078764 6 

0 1.513561 0.07 -0.081203 7 

4 0.023988 0.02 -0.083706 8 

1 0.036308 0.1 -0.084794 9 

14 0.006918 0.01 -0.085940 10 
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Table 5: Optimization results when sliding window, w, is five (w=5) 

 

 

 

 

 

 

 

 

 

 

4.2 Performance evaluation of the Optimized Hyperparameters 

The most optimized hyperparameters were subsequently selected and were employed for the prediction. Figures 1-5 

show the actual versus predicted values of the load. The data points are 16, 15, 14, 13, and 12 are for sliding window 

1, 2, 3, 4 and 5 respectively. Figure 1 shows the actual data with the predicted when the sliding window is one. The 

maximum predicted value 2549.80 MW in the sixth month while the actual value is 2625.56 MW in the fifth month. 

The minimum actual and predicted was at twelfth and eleventh month respectively. The predicted and actual value 

was 1911.39 MW and 1725.18 MW respectively. Figure 2 shows the actual and predicted for the sliding window of 

two, the maximum value of predicted and actual was 2552.51 MW at fifth month and 2625.56 MW at fourth month 

respectively. On the other hand, the minimum predicted, and actual value was at 1857.00 MW at eleventh month and 

1725.18 MW at tenth month respectively. Figure 3 shows the actual and predicted when the sliding window is three. 

The maximum and minimum value of predicted energy consumed was 2551.29 MW for fourth month and 1884.14 

MW for tenth month respectively. Figure 4 depicts the actual and predicted when the sliding window is four. The 

maximum and minimum value of predicted energy consumed was 2550.09 MW for third month and 1943.88 MW for 

sixth month respectively. Figure 5 shows the actual and predicted when the sliding window is five. The maximum and 

minimum value of predicted energy consumed was 2545.60 MW for first month and 1931.80 MW for fifth month 

respectively.      

Table 6 depicts the performance evaluation of the support vector regression models. Mean Square Error (MSE) and 

Mean Absolute Error (MAE) were employed for evaluation. The Model with sliding window of 1 had the best 

performance of MSE and MAE of 0.01912 and 0.09493 respectively. The model at sliding window of 3 had the least 

performance with 0.02209 and 0.10404 for MSE and MAE respectively. The sliding window technique is a viable 

approach that had proved to increase the performance of load prediction.  

 

Iteration 

index 

Hyperparameters Mean Test 

Score 

Rank Test 

Score C Epsilon 

5 109.647820 0.1 -0.051088 1 

6 660.693448 0.08 -0.061645 2 

10 109.647820 0.06 -0.066291 3 

12 6.918310 0.1 -0.068731 4 

2 1.513561 0.01 -0.076404 5 

7 1.148154 0.05 -0.078657 6 

0 1.513561 0.07 -0.084140 7 

9 0.165959 0.04 -0.085037 8 

4 0.023988 0.02 -0.086637 9 

1 0.036308 0.1 -0.090386 10 
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               Table 6: Performance evaluation with the Sliding window 

Sliding Window (w) MSE MAE 

1 0.01912 0.09493 

2 0.02116 0.10366 

3 0.02209 0.10404 

4 0.02048 0.10206 

5 0.01999 0.09974 

 

 

 

 

 

 

 

 

 

                                      

                                          Figure 1: Actual and predicted values for w=1 

 

 

 

 

 

 

 

 

  Figure 2: Actual and predicted values for w=2 
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  Figure 3: Actual and predicted values for w=3 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 4: Actual and predicted values for w=4 
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  Figure 5: Actual and predicted values for w=5 

 

5.0 Conclusion 

The study investigated the performance of Support Vector Regression (SVR) models using sliding window (w) 

technique. The electrical load dataset of six business hubs in Ogun State, Nigeria was employed for the development 

of the models. The results showed that, the values of the sliding window have effect on the load prediction. For 

efficient and effective load forecasting, the hyperparameters of the SVR were also optimized using Bayesian 

technique. The best performing model was obtained when the sliding window was one, that is, w=1. Summarily, this 

work discovered that, a sliding window technique could be employed to enhance load prediction. This could be used 

to reduces electrical load losses and revenue generation increment. Since this research study developed a linear SVR, 

in future, Radial basis function of SVR could also be investigated. In addition, optimization of the neural network 

hyperparameters could also be investigated in future studies. 

Future studies could employ other machine learning algorithm like optimized neural network and ensemble methods. 

The sliding window techniques can also be used with different dataset. Furthermore, weather parameters could also 

be added in future research. 
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